

2016 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

October, 2016

Local Authority Officer	Kay Sterling
Department	Public Protection
Address	Priory House, Monks Walk, Chicksands, Shefford, Bedfordshire, SG17 5TQ
Telephone	0300 300 5065
E-mail	kay.sterling@centralbedfordshire.gov.uk
Report Reference number	CBC/ASR/2016
Date	October 2016

Executive Summary: Air Quality in Our Area

Air Quality in Central Bedfordshire

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas^{1,2}.

The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around $\pounds 16$ billion³.

Central Bedfordshire Council is a unitary authority in Bedfordshire with an estimated population of 274,000 (2015) in an area of 716 square kilometres. The district is predominantly rural but has several market towns the most populated of which are in the south (Dunstable, Houghton Regis and Leighton-Linslade) with several smaller towns in the north (Flitwick, Ampthill, Biggleswade and Sandy). The M1, A1 and A5 provide the major north-south routes with the A421, A505 and A507 providing east-west routes. Luton Airport is close to Central Bedfordshire Council's district boundary.

The main source of pollution in the district is from road transportation both within town centers' and the motorway/trunk roads which have significant daily traffic flows. Other sources include sources from outside the district (i.e. emissions from London & Eastern Europe, etc.), and within the district boundary (i.e. local industry). There are currently 74 industrial processes permitted by Central Bedfordshire Council.

Currently nitrogen dioxide (NO₂) is the major pollutant of concern within Central Bedfordshire and is monitored throughout the district utilizing 37 diffusion tubes. Results of which will be discussed later in this document, however it can be noted that after applying the annualisation (where required), bias adjustment factor and distance correction calculation (where appropriate) only sites within the declared AQMAs showed an exceedance of the Air Quality Objective (namely N20 and N23).

The council also monitors particulate matter; however no exceedance of either the annual or 24hour mean objectives for PM_{10} has either been monitored or modelled.

¹ Environmental equity, air quality, socioeconomic status and respiratory health, 2010

² Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

³ Defra. Abatement cost guidance for valuing changes in air quality, May 2013

Given the health impacts of smaller particles, focus has been directed on $PM_{2.5}$. Central Bedfordshire Council has been monitoring this at the automatic realtime monitoring station in Sandy (adjacent to the A1) since 2013. As can be seen by the results discussed later in this document – levels of $PM_{2.5}$ monitored have slightly dropped year on year.

The majority of Central Bedfordshire Council's district meets the Air Quality Objectives (AQOs) (set by the UK Government) for several air pollutants including nitrogen dioxide (NO₂) and particulate matter (PM_{10}). However in three locations within the district, concentrations of NO₂ exceed the objective(s) levels.

Therefore, Central Bedfordshire Council declared a further two Air Quality Management Areas (AQMAs) in Ampthill and Sandy, adding to the existing one in Dunstable – the AQMAs in Ampthill and Dunstable were declared with respect to the annual objective for nitrogen dioxide (40 μ g/m³) and the Sandy AQMA for both the annual and hourly (200 μ g/m³ not to be exceeded more than 18 times per year).

Currently Central Bedfordshire Council are working with external partners such as Highways England and by inter-departmental representation to produce Air Quality Action Plans for Ampthill and Sandy following declaration of Air Quality Management Areas in both locations, to work towards reducing the levels of pollution and meet the Air Quality Objectives. Ampthill was declared with respect to the annual nitrogen dioxide (NO₂) Air Quality Objective (40 μ g/m³ – micrograms per cubic metre); whereas the Sandy AQMA was declared for both the annual and hourly (200 μ g/m³ not to be exceeded more than 18 times per annum) NO₂ objectives.

The Air Quality Action Plan regarding the AMQA in Dunstable was produced in 2006 and therefore requires updating. Work on this will take place after the new A5-M1 link road and Woodside Link road and the new M1 Junction (11a at Chalton) opens in 2017, as this is likely to result in the de-trunking of the A5 through Dunstable town, re-directing traffic away from the congested town centre and reducing the traffic flow, thereby reducing pollutant emissions and congestion. However Air Quality issues are continuing to be considered in plans surrounding the development of the town centre.

In order to maintain and improve air quality within Central Bedfordshire, Public Protection are consulted on planning applications in order to assess the likely impact on air pollution concentrations and/or if the development is likely to result in people being exposed to poor air quality. Public Protection officers may request that a further assessment be carried out by developers in order to determine any appropriate mitigation for the development given its location/size and subsequent impact of the development on the local environment. Alternatively Public Protection officers may recommend refusal of the development should there be no suitable mitigation measures.

Actions to Improve Air Quality

Work is continuing on the construction of the A5 – M1 link road (Dunstable northern bypass) which will provide a direct link between the two major road networks, removing non-local (through) traffic from the local infrastructure. This road will direct traffic away from traversing through Dunstable, which currently experiences high levels of congestion, especially in rush hour periods. In addition to this, work has commenced on constructing the Woodside Link road which will provide a direct link to traffic from a large industrial estate and other local traffic to the south/east of the town to the A5 north of Dunstable and to a new junction 11a on the M1 and will also form part of the new east-west corridor across the district. Completion of the scheme is expected in the summer of 2017.

Central Bedfordshire Council also has developed a number of policies to continue to develop sustainable transport, through walking & cycling policies throughout the district and additionally provision of Travel Choices –a web based application to assist people planning journeys (walking/cycling) throughout Dunstable – Houghton Regis and Luton.

Local Priorities and Challenges

Central Bedfordshire Council is committed to improving air quality in the district, particularly within the three AQMAs (Ampthill, Dunstable and Sandy).

However there are many local challenges which must be overcome to achieve these goals. In particular the Local challenges facing the formulation of the Action Plan include identifying any potential actions that would be possible to work towards the reduction of NO_2 concentrations within the AQMAs.

In the case of Ampthill, the major source of the high concentration of NO₂ is from local road transport. The roads are congested at peak hours and are narrow in places, often with buildings close to the kerb and of a height to give a "canyon effect". This results in little opportunity for hard engineering options (i.e. widening of roads, etc.) but likely will rely more on reducing the traffic on the road network and by promoting other travel options such as walking; cycling and utilising public transport.

In Sandy the major source of the high concentration of NO₂ is from road transport emissions from the A1, affecting the area immediately adjacent to residential properties. Again there is little opportunity for hard engineering solutions on the road network (i.e. road re-alignment; barriers, etc.)

The particularly high concentration of NO_2 is located and affects a stretch of the A1, incorporating nine residential properties which are within 1-5 metres of the kerb. The row of cottages closest to the kerb act to prevent the emissions to dissipate.

Additional monitoring sites were located in the vicinity, which indicate that concentrations at nearby monitoring sites show reduced concentrations (N25 & N28 - which is set back from the A1), a further monitoring site was introduced to the

network in January 2016 – results will be reported in future reports; (N30) was located within a metre of the A1 but has no obstructions to prevent dissipation of emissions. Results, so far, indicate that this site has a considerably lower concentration of NO₂, than the site located on the façade of the cottages immediately adjacent to the A1 (N20), but still is likely to exceed the hourly objective concentration. These results indicate that the hourly AQO exceedance is likely to affect only the properties immediately adjacent to the A1 (within 10metres), however the annual objective is still being exceeded within the current Sandy AQMA boundary.

There is already a speed restriction in place on the A1 in this location (50mph) which helps reduce emissions of pollutants from vehicles. Central Bedfordshire Council are looking to work with both Highways England, as the A1 is managed by them, and the council's Highways department, who manage the local road network; to work towards reducing air pollution concentrations in the area.

The priorities for the next 12 months are to produce the finalised Action Plans for the AQMAs in Ampthill and Sandy and implement the actions identified. Meanwhile monitoring will continue in these areas to identify the effectiveness of actions on reducing the NO_2 concentrations within the AQMAs. In addition Central Bedfordshire Council will continue to monitor air quality in other locations in the district to ensure that the AQOs continue to be met.

The Action Plan relating to the Dunstable AQMA needs reviewing and updating to take in to account the opening of the new A5-M1 road and the Woodside Link and the subsequent effect on local air quality. This work will be addressed as soon as practicable.

How to Get Involved

Emissions from road transportation are the major source of air pollution in the district and therefore the public can help reduce local air pollution concentrations by choosing to walk, cycle and/or use public transport and reduce reliance on cars for trips where possible.

When using a car for trips emissions can be minimised by ensuring that the vehicle is not over revved and that the engine is switched off when the vehicle is stationary (parked) or is likely to be stationary for a period of time. Emissions can be further reduced by removing unnecessary loads from boots and roof carriers to minimise the weight which improves fuel efficiency. The newer the vehicle the greater level of emission controls it will have and therefore produce less pollution than older cars.

The following websites provide information to assist with travel in Central Bedfordshire:

- Busway <u>http://www.busway.net/</u> which has information relating to busway routes and times.
- Travel line South East - <u>http://www.travelinesoutheast.org.uk/se/XSLT_TRIP_REQUEST2?language=</u> <u>en&timeOffset=15</u> – where users can plan journeys using public transport throughout the region.
- Travel choices <u>http://www.cbtravelchoices.co.uk/home</u> which has information regarding traffic and travel in/around Dunstable, Houghton Regis and Leighton Buzzard

More general information regarding transport issues in Central Bedfordshire can be found on the council's website:

• Transport, roads and parking - <u>http://www.centralbedfordshire.gov.uk/transport/landing.aspx</u>

Table of Contents

Exe	cutive	Summary: Air Quality in Our Area	1
А	ir Qual	lity in Central Bedfordshire	1
А	ctions	to Improve Air Quality	3
L	ocal Pi	iorities and Challenges	3
F	low to	Get Involved	4
1	Loca	al Air Quality Management	8
2	Actio	ons to Improve Air Quality	9
2	.1 /	Air Quality Management Areas	9
2	.2 F	Progress and Impact of Measures to address Air Quality in Central	
Е	Bedford	shire	9
2	.3 F	PM _{2.5} – Local Authority Approach to Reducing Emissions and or	
C	Concen	trations1	5
3	Air C	Quality Monitoring Data and Comparison with Air Quality	
Obj	ective	s and National Compliance1	6
3	.1 5	Summary of Monitoring Undertaken1	6
	3.1.1	Automatic Monitoring Sites 1	6
	3.1.2	Non-Automatic Monitoring Sites1	7
3	.2 I	ndividual Pollutants1	7
	3.2.1	Nitrogen Dioxide (NO ₂)1	7
	3.2.2	Particulate Matter (PM ₁₀)1	8
	3.2.3	Particulate Matter (PM _{2.5})1	8
Арр	pendix	A: Monitoring Results1	9
App	pendix	B: Full Monthly Diffusion Tube Results for 2015	0
Арр	pendix	C: Supporting Technical Information / Air Quality Monitoring	
Dat	a QA/	QC	6
Арр	oendix	D: Map(s) of Monitoring Locations	9
Арр	oendix	E: Summary of Air Quality Objectives in England	0
Арр	oendix	F: Location maps of Air Quality Management Areas6	1
Glo	ssary	of Terms	5
Ref	erenc	es6	6

List of Tables

Table 2.1 – Declared Air Quality Management Areas	9
Table 2.2 – Progress on Measures to Improve Air Quality	.11

Table A.1 – Details of Automatic Monitoring Sites

- Table A.2 Details of Non-Automatic Monitoring Sites
- Table A.3 Annual Mean NO₂ Monitoring Results
- Table A.4 1-Hour Mean NO₂ Monitoring Results
- Table A.5 Annual Mean PM₁₀ Monitoring Results
- Table A.6 24-Hour Mean PM₁₀ Monitoring Results
- Table A.7 PM_{2.5} Monitoring Results
- Table B.1 NO₂ Monthly Diffusion Tube Results 2015
- Table C1 NO₂ diffusion tube data annualisation calculation (Ampthill 4 N27)
- Table C2 NO₂ diffusion tube data annualisation calculation (Chalton 28)
- Table C3 NO₂ diffusion tube data annualisation calculation (Sandy N28)
- Table C4 NO₂ diffusion tube data annualisation calculation (Brogborough N7)
- Table C5 NO₂ diffusion tube data annualisation calculation (Chalton 41)
- Table C6 National bias adjustment factor
- Table C7 Distance correction for site N1
- Table C8 Distance correction for site N16
- Table C9 Distance correction for site N17
- Table C10 Distance correction for N22
- Table C11 Distance correction for site 33
- Table C12 Distance correction for site 34
- Table C13 Distance correction for site 37
- Table C14 Distance correction for site 50
- Table C15 Distance correction for site 48
- Table C16 PM10 continuous data annualisation calculation

Table E1 - Air Quality Objectives in England

List of Figures

Figure B1 – 5 year trend of NO₂ diffusion tube data

Maps of NO₂ tube sites:

Figure D1- Houghton Regis (10) Figure D2 – Sallowsprings (14) Figure D3 – Ampthill (N21, N22, N23, N27 & N32) Figure D4 – Beeston (N4) Figure D5 – Leighton Buzzard (52 & 53) Figure D6 – Biggleswade (N29) Figure D7 – Sandy (N1, N6, N16, N17, N18 & N31) Figure D8 – Woburn (N26) Figure D9 – Dunstable Figure D10 – Sandy (N9, N10, N12, N13, N14, N20, N25, N28 & N30)

Maps of AQMAs:

Figure F1 – Dunstable Figure F2 – Ampthill Figure F3 - Sandy

1 Local Air Quality Management

This report provides an overview of air quality in Central Bedfordshire during 2015. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Central Bedfordshire to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E.

2 Actions to Improve Air Quality

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

A summary of AQMAs declared by Central Bedfordshire Council can be found in Table 2.1. Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at https://uk-air.defra.gov.uk/aqma/local-authorities?la_id=444 but are also so shown in Appendix F.

AQMA Name	Pollutants and Air Quality Objectives	Town	One Line Description	Action Plan
AQMA 1 Dunstable	NO₂ annual mean	Dunstable	An area encompassing the town centre & along the A505 (Luton Rd) & A5 (Watling St).	Action plan produced in 2005 – to be reviewed (following opening of new road (A5-M1& Woodside link) in 2017)
AQMA 2 Sandy	NO ₂ annual & hourly mean	Sandy	10 metres either side of A1 road from Bedford Rd to the Girtford exit, encompassing some residential properties	Action Plan currently being developed
AQMA 3 Ampthill	NO ₂ annual mean	Ampthill	An area encompassing residential properties near the town centre. The AQMA extends to adjacent properties in Dunstable St & Church St	Action Plan currently being developed

Table 2.1 – Declared Air Quality Management Areas

2.2 Progress and Impact of Measures to address Air Quality in Central Bedfordshire

Central Bedfordshire Council has taken forward a number of measures during the current reporting year of 2015 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. More detail on these measures can be found in their respective Action Plans.

Key completed measures are:

- Measure 13 Luton Dunstable Busway (guided busway): was completed in the autumn of 2013, usage of the busway has increased the service provision and speed of routes between Dunstable/Houghton Regis and Luton.
- the new A5-M1 link road and Woodside Link road and the new M1 Junction (11a at Chalton) is due to open in 2017, this is likely to have a significant impact on air quality in Dunstable (due to the potential of de-trunking of the A5 through Dunstable town, re-directing traffic away from the congested town centre and reducing the traffic flow, thereby reducing pollutant emissions and congestion). The situation will be monitored and the existing Air Quality Action Plan updated to reflect changes.

Central Bedfordshire Council's priorities for the coming year are to:

- Produce Action Plans in consultation with all partners in order to address air quality in the Ampthill and Sandy AQMAs.
- Review and update the Dunstable AQMA and the associated Action Plan subsequent to the opening of the M1-A5 (Dunstable bypass) road and the Woodside Connection link and the proposed de-trunking of the A5 in Dunstable.

Measu re No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implementation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimated Completio n Date	Comments
1	Increase use of mixed developments	Policy Guidance and Development Control	Air Quality Planning and Policy Guidance	CBC	2004	Ongoing	No of such developments	<1% of all planning apps relate to this type of development	The number of such developments is likely to increase as the Government has stated 26,000 new homes to be built in this area.		
3	Encourage adoption of travel plans	Promoting Travel Alternatives	Workplace Travel Planning	CBC	2004	Ongoing	No of travel plans	<1%	Green travel initiatives enhanced by Travel Choices programme promoting sustainable travel and reducing impact of journeys.	ongoing	
4	CBC Green Travel Plan	Promoting Travel Alternatives	Workplace Travel Planning	СВС	2004	ongoing	Changes of modes of staff travel	<1%	Travel choices programme and Local Transport Plan	ongoing	

Table 2.2 – Progress on Measures to Improve Air Quality

Measu re No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implementation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimated Completio n Date	Comments
6	Encourage walking / cycling & public transport	Promoting Travel Alternatives	Promotion of cycling/walking/other	CBC	2004	ongoing	passengers nos & travel survey / time comparison	<1%	Publicising bus, walking and cycling routes has helped to raise the profile of these methods of transport		
8	Improve/extend cycle path network	Promoting Travel Alternatives	Promotion of cycling	CBC	2004	ongoing	Additions to nework / no of users /work done	<1%	Since AQAP there has been a 74% increase in on/off road cycle paths	Ongoing	
10	Encourage use & benefits of public transport	Promoting Travel Alternatives	Other	СВС	2004	ongoing	Number of passengers, travel survey, time comparisons	<1%	Green travel initiatives enhanced by Travel Choices programme promoting sustainable travel and reducing impacts of journeys.	ongoing	
12	Provision of incentives to use public transport	Promoting Travel Alternatives	Other	СВС	2004	ongoing	Number of passengers, travel survey, time comparisons	<0.5%	Rural bus routes and free bus passes for senior citizens continued to be financially supported by CBC		
13	Improvements in public transport infrastructure	Transport planning & infrastructure	Bus route improvements	CBC	2004	Completed	Congestion data, journey time comparison, etc	<0.5%	Guided busway now open	Completed	

Measu re No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implementation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimated Completio n Date	Comments
15	Encourage car sharing / walking / cycling	Promoting travel alternatives	Promotion of cycling Promotion of walking Personalised travel planning	CBC	2004	ongoing	Numbers of walkers /cyclists - travel survey	<0.5%	Green travel initiatives enhanced by Travel Choices programme promoting sustainable travel and reducing impact of journeys.		
16	Improvements to road network	Traffic Management	Strategic highway improvements etc	CBC	2004	ongoing	Congestion / road capacity/density statistics	<1%	Dunstable Bypass construction work commenced and due for completion in 2017		
23	Promote use & availability of alternative fuels / more efficient vehicles	Promoting low emission transport	Procuring alternative refuelling	CBC	2004	ongoing	Availabilty and amount sold. % of these fuels in overall sales	<0.5%	Increasing number of petrol stations providing alternative fuels & electric charging points within more car parks.		
24	Develop availability of alternative fuels	Promoting low emission transport	Procuring alternative refuelling	CBC	2004	ongoing	Local availability	<0.5%	Increasing availability of alternative fuels		
28	Local development framework adopting policies improving AQ	Policy guidance & development	Air quality planning & policy guidance	CBC	2004	ongoing	Review and implement changes as required	<0.5%	CBC developed strategies& review		
30	Develop/maintain partnerships to improve services/planning/access	Other policy	Other measure	CBC	2004	ongoing	Inter-agency communications	<0.5%	Ongoing / new partnerships to develop Local Transport Plans, AQAPs etc continue		

Measu re No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implementation Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimated Completio n Date	Comments
31	Review provision of alternative transportation priority measures	Traffic management	Strategic highway improvements etc	CBC	2004	ongoing	Road capacity, Journey times	<0.5%	No room to add dedicated bus lanes to the road network. New bus routes added		
33	Road network improvements	Traffic management	Strategic highway improvements etc	CBC	2004	ongoing	Congestion / traffic counts	<1%	Dunstable bypass construction commenced and due completion in 2017		

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of $PM_{2.5}$ (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that $PM_{2.5}$ has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases. However $PM_{2.5}$ does not currently have any objectives set out within the Air Quality Objectives.

Central Bedfordshire Council has taken the following measures to address PM_{2.5}:

- The Public Health function is incorporated within the unitary authority and a working partnership with Public Protection is being created following:
 - Increased evidence and awareness of harm from exposure to PM_{2.5}
 - A public Health Outcomes Framework Indicator "Fraction of all-cause mortality attributable to anthropogenic particulate air pollution (measured as fine particulate matter, PM_{2.5})"
- PM_{2.5} concentrations are being monitored at the AURN realtime analyser sited adjacent to the A1 in Sandy and have been since 2013.
 - \circ In 2013 the annual mean was 13 µg/m³
 - o In 2014 the annual mean was 12 μ g/m³; and
 - o In 2015 the annual mean was 11 μ g/m³.
- These results are well within the proposed EU Emission Limit Value of 25 μ g/m³.
- Therefore concentrations of PM_{2.5} will continue to be monitored at this site to ensure that the proposed EU Emission Limit Value continues to be met and to provide long-term trend data.
- However there is no evidence for a threshold below which effects would not be expected (COMEAP2009). This means that current levels of particulate air pollution in the UK and elsewhere in Europe have a significant impact on the life expectancy of the population. As a result, EU member states are required to achieve a reduction in population exposure to PM_{2.5} as indicated by concentrations monitored at background locations in major urban areas, averaged over a period of 3 years. In the UK a 15% reduction in this average exposure indicator (AEI) is required over a period of 10 years from 2010. (PHE2014)
- Local authorities have no direct responsibility to control PM_{2.5} concentrations although many measures utilised to reduce levels of PM₁₀ & NO₂ will also reduce emissions/concentrations of PM_{2.5}.

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how it compares with objectives.

Central Bedfordshire Council undertook automatic (continuous) monitoring of nitrogen dioxide (NO₂) and particulate matter (both PM_{10} and $PM_{2.5}$) at one site during 2015. Table A.8 in Appendix A shows the details of the sites. National monitoring results are available at <u>http://uk-air.defra.gov.uk/networks/network-info?view=aurn</u>

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

3.1.2 Non-Automatic Monitoring Sites

Central Bedfordshire Council undertook non- automatic (passive) monitoring of NO₂ at 37 sites during 2015. Table A.9 in Appendix A shows the details of the sites.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C.

Use of the NO₂ fall-off with distance calculator was used to calculate the likely concentration at the nearest receptor at those monitoring sites located some way from appropriate receptors). This was only required for sites with results exceeding or near to breaching the NO₂ annual objective. The calculator is available on the LAQM Support website <u>http://laqm.defra.gov.uk/tools-monitoring-data/no2-falloff.html</u>

The calculations can be seen in Appendix C

After applying the annualisation (where required), bias adjustment factor and distance correction calculation (where appropriate) only sites within the declared AQMAs showed an exceedance of the Air Quality Objective (namely N20 and N23).

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for "annualization", bias adjustment and distance correction. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

Table A.10 in Appendix A compares the ratified and adjusted monitored NO₂ annual mean concentrations for the past 5 years with the air quality objective of $40\mu g/m^3$.

For diffusion tubes, the full 2015 dataset of monthly mean values is provided in Appendix B.

Table A.11 in Appendix A compares the ratified continuous monitored NO₂ hourly mean concentrations for the past 5 years with the air quality objective of $200\mu g/m^3$, not to be exceeded more than 18 times per year.

Figue B1 in Appendix B, highlights the 5 year trend in NO2 diffusion tube results. The majority of the sites show that results in 2015 are lower that that recorded in 2011.

In 2015 exceedences of the annual mean NO_2 objective was measured at 6 diffusion tube locations – all of which are located within declared AQMAs (N20 and N17 within Sandy; N23 within Ampthill and 34, 37 & 50 within Dunstable AQMAs).

A distance correction calculation was undertaken (Tables C7 –C15 in Appendix C). This calculated that the annual mean calculation at the façade of the nearest property, this resulted in only sites N23 and N20 remaining above the annual AQO for NO₂ (and in addition the hourly AQO for N20).

The tube site known as N20 (A1 – Sandy) has recorded concentrations greater than $60\mu g/m^3$ annually, which indicates that the hourly objective for nitrogen dioxide has been exceeded in this location. The AQMA in Sandy was declared for both the hourly and annual NO₂ objectives.

No monitoring sites outside of current AQMAs show an exceedence of the air quality objectives (hourly or annual) and as such there is no need to progress to declare further AQMAs. However there are a number of sites which show borderline levels (above $36 \ \mu g/m3$) of NO₂, monitoring will continue at these locations to ensure that concentrations remain below the objective levels. Should exceedences occur then work towards declaring further AQMA(s) will be pursued.

3.2.2 Particulate Matter (PM₁₀)

Table A.12 in Appendix A compares the ratified and adjusted monitored PM_{10} annual mean concentrations for the past 5 years with the air quality objective of $40\mu g/m^3$.

Table A.13 in Appendix A compares the ratified continuous monitored PM_{10} daily mean concentrations for the past 5 years with the air quality objective of $50\mu g/m^3$, not to be exceeded more than 35 times per year.

The annual mean concentration of PM_{10} measured at the Sandy continuous monitoring site was 10.30 µg/m^{3 (annualised)} in 2015, with 1 excedence of the 24 hour mean.

Results from monitoring PM_{10} in previous years have not shown any exceedences of either the annual or 24 hour mean objectives.

All measurements were considerably less than the objectives set and show that this location does not need any further action in relation to PM_{10} . However monitoring of PM_{10} will continue at this location.

Modelling carried out during previous rounds of Review and Assessment indicated that no locations within Central Bedfordshire exceed the PM_{10} objectives. No changes have occurred in the district to alter this situation.

3.2.3 Particulate Matter (PM_{2.5})

Particulate matter $PM_{2.5}$ has been monitored at the Sandy continuous monitioring site since 2013.

Table A.14 in Appendix A presents the ratified and adjusted monitored $PM_{2.5}$ annual mean concentrations since 2013.

In 2015 the annual mean concentration was $11\mu g/m^3$ – there has been a slight reduction in the concentration measured year on year. The results are well within the proposed EU Emission Limit Value of 25 $\mu g/m^3$.

Concentrations of $PM_{2.5}$ will continue to be monitored at this site to ensure that the proposed EU Emission Limit Value continues to be met and to provide long-term trend data.

Appendix A: Monitoring Results

Table A.8 – Details of Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Monitoring Technique	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Inlet Height (m)
MD3	Sandy	Roadside	516436	249600	NO ₂ ; PM _{10;} PM _{2.5}	Y	Chemiluminescent; FDMS TEOM	-	2m	1.5

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable.

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA ?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?	Height (m)
N1	A1 Sandy	Kerbside	516485	249202	NO ₂	Y	3	1	Y	1.5
N2	Rose Lane B'wade	Kerbside	519163	244654	NO ₂	Ν	4	1	Ν	1.5
N3	High St B'wade	Kerbside	518995	244594	NO ₂	Ν	-	1	Ν	1.5
N4	A1 Beeston	Kerbside	517160	248190	NO ₂	Ν	2	1	Ν	1.5
N6	Bedford Rd Sandy	Kerbside	516621	249100	NO ₂	Y	4	1	Ν	1.5
N7	Highfield Cres Brogborough	Kerbside	496334	238297	NO ₂	Ν	10	3	Ν	1.5
N20	A1 Carter Lane Sandy	Kerbside	516534	249974	NO ₂	Y	0	1	Ν	1.5
N9	A1 Hunts Car Co 1 Sandy	Kerbside	516451	249692	NO ₂	Y	-	1	Ν	1.5
N10	A1 Hunts Car Co 2 Sandy	Kerbside	516480	249695	NO ₂	Ν	4	2	Ν	1.5
N12	NOx Co loc 1	Kerbside	516434	249603	NO ₂	Y	-	3	Y	1.2

Table A.9 – Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA ?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?	Height (m)
N13	NOx Co loc 2	Kerbside	516434	249603	NO ₂	Y	-	3	Y	1.2
N14	NOx Co loc 3	Kerbside	516434	249603	NO ₂	Y	-	3	Y	1.2
N16	Bedford Rd Sandy	Kerbside	516593	249083	NO ₂	Y	3	1	Ν	1.5
N17	Bedford Rd Sandy	Kerbside	516569	249074	NO ₂	Y	6	1	Ν	1.5
N18	Eddie's Cottage Sandy	Kerbside	516579	249070	NO ₂	Y	0	5	Ν	0.75
N19	McMurdo Ct Sandy	Kerbside	516524	249139	NO ₂	Ν	0	11	Ν	1.5
N21	Ampthill 1	Kerbside	503444	238197	NO ₂	Y	3	2	Ν	1.5
N22	Ampthill 2	Kerbside	503466	238141	NO ₂	Y	8	1	Ν	1.5
N23	Ampthill 3	Kerbside	503458	283039	NO ₂	Y	2	1	Ν	1.5
N25	The Akbar A1 Sandy	Kerbside	516568	250174	NO ₂	Y	-	1	Ν	1.5

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA ?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?	Height (m)
N26	Woburn	Kerbside	494900	233230	NO ₂	Ν	2	1	Ν	1.5
N28	Sandy	Kerbside	516551	249 967 96	7 NO ₂	Ν	1.5	1	Ν	0.75
1	High St South D'ble	Kerbside	501936	221833	NO ₂	Y	-	1	Ν	0.75
3	Mardale D'ble	Kerbside	502029	220688	NO ₂	Ν	3	1	Ν	1.5
5	Rowley Linslade	Kerbside	491000	225788	NO ₂	Ν	3	1	Ν	0.75
6	Barton	Kerbside	508062	230874	NO ₂	Ν	5	1	Ν	1.5
7	Slip End	Kerbside	507698	218376	NO ₂	Ν	3	1	Ν	1.5
10	Houghton Regis	Kerbside	501991	223965	NO ₂	Ν	-	1	Ν	0.75
14	Sallowsprings	Kerbside	500525	218840	NO ₂	Ν	-	8	Ν	0.75
17	London/Mayfield D'ble	Kerbside	502848	220829	NO ₂	Ν	5	2	Ν	1.5

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA ?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?	Height (m)
18	Argos D'ble	Kerbside	501705	222089	NO ₂	Ν	-	1	Ν	0.75
21	Frenchs Ave D'ble	Kerbside	500790	223047	NO ₂	Ν	4	2	Ν	1.5
26	West St D'ble	Kerbside	501571	221742	NO ₂	Ν	5	1	Ν	1.5
28	Chalton	Kerbside	503763	226103	NO ₂	Ν	-	1	Ν	0.75
33	Church St D'ble	Kerbside	501962	221884	NO ₂	Y	1	8	Ν	1.5
34	High St South D'ble	Kerbside	501911	221853	NO ₂	Y	4	1	Ν	0.75
35	Flint Ct D'ble	Kerbside	501504	222278	NO ₂	Ν	0	3	Ν	0.75
36	Luton Rd D'ble	Kerbside	503849	222326	NO ₂	Y	2	1	Ν	1.5
37	Luton Rd D'ble	Kerbside	502838	222071	NO ₂	Y	3	1	Ν	1.5
39	Houghton Rd D'ble	Kerbside	501151	222821	NO ₂	Ν	3	1	Ν	1.5

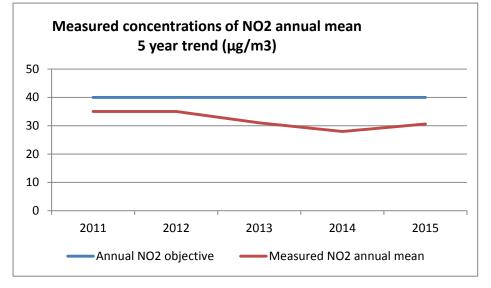
Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA ?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m) ⁽²⁾	Tube collocated with a Continuous Analyser?	Height (m)
41	Chalton X	Kerbside	503925	225855	NO ₂	Ν	0	6	Ν	0.75
48	Poynters Rd D'ble	Kerbside	503745	222914	NO ₂	Ν	4	1	Ν	0.75
49	Poynters Rd D'ble	Kerbside	503569	223034	NO ₂	Ν	6	1	Ν	1.5
50	Luton Rd D'ble	Kerbside	502813	222065	NO ₂	Y	6	1	Ν	0.75
51	Busway D'ble	Kerbside	503481	221866	NO ₂	N	8	2	N	0.75
52	Hockliffe St L/Buzzard	Kerbside	492512	225235	NO ₂	Ν	2	1	Ν	0.75

(1) Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

(2) N/A if not applicable.

Table A.10 – Annual Mean NO₂ Monitoring Results

Site ID	Site Type	Monitoring Type	Valid Data Capture for Monitoring	Valid Data Capture 2015 (%)	NO ₂ /	Annual Mear	n Concentra	ntion (µg/m³)	(3)
		5 77	Period (%) ⁽¹⁾	(2)	2011	2012	2013	2014	2015
MD3	Roadside	Automatic	-	98	35	35	31	27.94 (annualised)	30.6


Notes: Exceedances of the NO₂ annual mean objective of $40\mu g/m^3$ are shown in **bold**.

NO₂ annual means exceeding 60µg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

As can be seen from the figure (left) the NO₂ annual objective has not been exceeded. Overall levels of measured annual mean concentrations have reduced since 2011, the lowest annual mean concentration was achieved in 2014. However there was a slight increase in the annual mean concentration in 2015. However levels of air pollution can be affected by factors such as meteorological conditions

The trend of declining measured annual NO_2 concentrations has ceased in 2015, where the concentration increased. This situation will be monitored to ascertain if the rise was a one off, of if levels will continue to rise or if levels will decrease in 2016.

Table A.11 – 1-Hour Mean NO2 Monitoring Results

		Monitoring	Valid Data Capture for	Valid Data		NO ₂ 1-Hou	r Means > 2	200µg/m ^{3 (3)}	
Site ID	Site Type	Туре	Monitoring Period (%) ⁽¹⁾	Capture 2015 (%) ⁽²⁾	2011	2012	2013	2014	2015
MD3	Roadside	Automatic	-	98	0	0	0	0 (113)	0 (130)

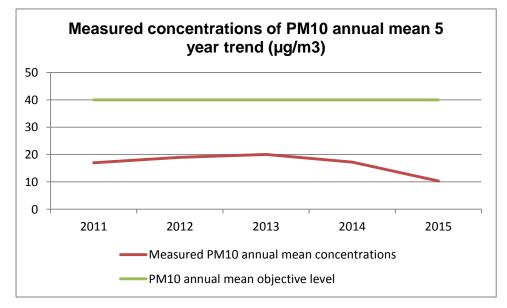
Notes: Exceedances of the NO₂ 1-hour mean objective (200µg/m³ not to be exceeded more than 18 times/year) are shown in **bold**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) If the period of valid data is less than 90%, the 99.8th percentile of 1-hour means is provided in brackets.

Table A.12 – Annual Mean PM₁₀ Monitoring Results


Sit	e ID	Site Type	Valid Data Capture for Monitoring	Valid Data Capture 2015	PM ₁₀ .	Annual Me	an Concen	tration (µg/	′m³) ⁽³⁾
Site	e id	Site Type	Period (%) ⁽¹⁾	(%) ⁽²⁾	2011	2012	2013	2014	2015
M	ID3	Roadside	-	58	17	19	20	17.21 (annualised)	10.30 (annualised)

Notes: Exceedances of the PM_{10} annual mean objective of $40\mu g/m^3$ are shown in **bold**.

(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

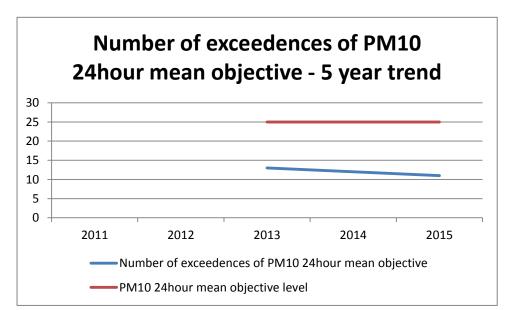
(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) All means have been "annualised" as per Technical Guidance LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

As can be seen from the figure (left) the PM_{10} annual objective has not been exceeded. Despite a slight increase in measured concentrations in 2012 and 2013, levels have decreased in subsequent years to reach the lowest concentration in 2015.

The trend is one of declining concentrations of annual PM_{10}

Table A.13 – 24-Hour Mean PM₁₀ Monitoring Results


Site ID	Site Type	Valid Data Capture for Monitoring Period (%)			PM ₁₀ 24-Ho	our Means >	- 50μg/m^{3 (3)}	
	one rype		(2)	2011	2012	2013	2014	2015
MD3	Roadside		58	4	8	6	1 (27)	1 (26.4)

Notes: Exceedances of the PM₁₀ 24-hour mean objective (50µg/m³ not to be exceeded more than 35 times/year) are shown in **bold**.

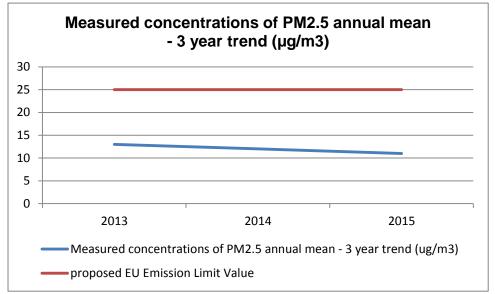
(1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) If the period of valid data is less than 90%, the 90.4th percentile of 24-hour means is provided in brackets.

As can be seen from the figure (left) the PM_{10} 24hour mean objective has not been exceeded.

The five year trend shows that the number of exceedences measured has reduced from the 2011 level. In 2012 there was a slight increase in the number of exceedences, which then educed in 2013 and 2014. 2015 numbers remained at the same level as 2014.


Table A.14 – PM_{2.5} Monitoring Results

Site ID		Valid Data Capture for Monitoring	Valid Data Capture 2015	PM _{2.5}	Annual Me	an Concen	tration (µg/	′m³) ⁽³⁾
Sile iD	Site Type	Period (%) ⁽¹⁾	(%) ⁽²⁾	2011	2012	2013	2014	2015
MD3	Roadside		94	-	-	13	12	11

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) All means have been "annualised" as per Technical Guidance LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

As can be seen from the figure (left) the $PM_{2.5}$ proposed EU Emission Limit Value of 25 µg/m³ has not been exceeded.

Three years of monitoring have shown a decline in the annual concentration year on year.

Monitoring of PM_{2.5} will continue.

Appendix B: Full Monthly Diffusion Tube Results for 2015

Table B.2 – NO₂ Monthly Diffusion Tube Results – 2015 (figures in bold show concentrations higher than the annual NO₂ air quality objective and those in bold & underscored indicate concentrations which may exceed the hourly NO₂ air quality objective)

							NO ₂	Mean C	oncentra	ations (µg/m³)				
														Annual M	lean
Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted	Distance corrected
N1	56.82	41.1	38.99	40.11	42.87	47.39	-	42.57	47.27	38.64	37.31	42.24	43.21	39.32	33.7
N2	36.4	33.84	27.33	25.77	-	51.33	27.86	24.13	24.51	25.98	23.31	26.11	29.68	27.01	-
N3	45.8	38.71	36.84	41.33	20.87	38.31	-	33.68	40.08	38.3	-	23.77	35.77	32.55	-
N4	42.72	40.9	38.21	39.62	32.46	39.94	33.97	35.66	41.44	42.26	32.51	27.05	37.23	32.88	-
N6	44.75	36.71	39.66	26.29	33.32	32.63	35.72	34.5	37.81	32.14	40.86	34.6	36.58	33.29	-
N7	36.79	30.33	31.84	25.28	23.82	23.51	23.62	-	-	-	-	-	27.88	33.62a	-
N20	85.2	91.11	75.49	79.93	52.78	76.53	73.63	68.87	88.35	77.06	55.83	63.02	<u>73.98</u>	<u>67.32</u>	No fall off
N9	54.16	46.43	40.72	37.4	33.27	42.57	40.17	40.36	39.32	42.82	43.24	34.77	41.27	37.55	No relevant exposure
N10	36.88	31.88	30.72	20.95	21.24	20.91	21.63	24.57	23.83	23.91	26.46	26.12	25.76	23.44	-
N12	45.74	40.14	31.94	28.1	31.32	29.23	33.57	32.57	40.15	33.42	34.88	26.25	33.94	30.89	-
N13	48.53	38.6	34	30.65	33.96	32.64	35.67	31	37.14	30.62	34.29	30.94	34.84	31.70	-
N14	50.81	41.04	34.87	31.24	31.67	32.79	37.46	32.16	37.6	31	33.9	27.7	35.19	32.02	-
N16	49.39	47.58	42	45.12	41.98	41.53	40.52	40.19	43.37	40	47.34	39.52	43.21	39.32	33.7
N17	71.89	52.18	49.26	44.45	82.91	52.52	46.86	45.92	47.31	38.3	56.97	43.58	50.18	45.66	33.2

							NO ₂	Mean Co	oncentra	ations (µg/m³)				
														Annual M	lean
Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted (0.91)	Distance corrected
N18	40.72	35.86	30.57	22.55	30.2	29.55	31.94	29.71	30.9	29.71	28.18	26.17	30.51	27.76	-
N19	33.98	28.95	24.71	25.03	27.3	24.34	29.54	27.37	26.76	27.35	31.48	26.01	27.74	25.24	-
N21	29.04	30.73	27.34	31.05	19	21.35	21.58	23.29	27.39	30.46	25.2	23.33	25.81	23.49	-
N22	56.17	46.65	38.27	42.95	36.87	42.94	42.03	41.36	39	43.72	47.27	46.89	43.68	39.75	29.1
N23	57.87	50.63	43.03	56.25	40.93	41.43	38.29	41.52	57.14	50.57	38.93	38.28	46.24	42.08	No fall off
N25	49.59	49.97	33.24	37.98	29.04	30.28	32.84	33.7	42.23	41.41	33.47	37.92	37.64	34.25	-
N26	-	43.39	43.05	42.6	37.36	34.24	43.88	43.96	43.15	41.82	35.46	22.63	39.23	35.70	-
N27	-	-	-	-	-	27	29.54	32.38	38.8	37.55	31.46	23.71	31.49	22.03a	-
N28	-	-	-	-	-	-	-	10.85	26.68	25.17	26.19	19.97	21.77	13.96a	-
1	40.62	44.81	42.82	49.43	38.59	32.94	-	61.78	44.77	50.63	33.86	27.03	42.48	38.66	No relevant exposure
3	15.66	22.15	17.14	15.69	10.06	8.45	8.72	10.71	12.06	18.28	16.79	11.6	13.94	12.64	-
5	19.39	20.43	16.14	14.19	8.23	8.88	10.2	11.06	-	21.71	15.92	12.59	14.43	13.13	-
6	8.54	32.95	27.7	27.53	20.71	18.9	18.53	21.8	26.65	29.38	25.2	22.56	23.37	21.27	-
7	20.61	24.48	18.02	21.37	12	9.8	10.77	15.1	18.52	22.62	14.54	16.89	17.06	15.52	-
10	39.58	40.23	36.66	37.85	30.14	24.18	30.17	37.46	37.46	36.76	35.13	28.91	34.54	31.44	-
14	15.39	40.17	14.01	3.43	7.38	7.09	7.91	9.78	12.36	12.06	12.65	11.42	12.80	11.65	-
17	35.38	43.72	33.62	33.36	26.18	19.15	34.52	35.06	35.36	39.99	28.74	29.36	32.87	29.91	-
18	4.48	40.29	43.84	52.17	41.39	35.44	38.26	38.95	51.67	51.95	33.46	32	42.16	38.36	No relevant exposure

							NO ₂	Mean Co	oncentra	ations (ug/m³)				
														Annual N	lean
Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted (0.91)	Distance corrected
21	35.79	35.48	34	29.5	27	27.61	31.12	33.99	30.61	33.43	27.21	33.84	31.63	28.78	-
26	-	36.85	33.26	38.51	31.58	32.47	30.8	29.7	36.35	37.26	29.34	24.9	32.82	29.87	-
27	37.5	45.11	40.84	44.6	30.98	29.09	25.75	27.88	33.29	41.75	33.24	21.47	34.29	31.21	-
28	-	59.16	46.4	45.69	30.27	33.27	47.63	54.15	50.91	-	-	-	45.94	30.95a	-
33	50.83	44.14	39.9	44.1	36.39	31.38	42.5	39.54	42.55	41.88	39.87	32.19	40.46	36.82	35.9
34	54.67	49.19	49.98	-	-	-	47.15	48.37	58.78	58	48.55	30.12	49.46	44.98	36.7
35	44.11	40.03	40.35	36.99	32.92	25.79	32.24	33.02	34.43	36.25	31.16	27.58	34.57	31.46	-
36	52.08	48.16	-	33.47	24.95	-	-	26.72	32.94	38.46	23.91	23.54	33.80	30.76	-
37	71.81	43.38	49.3	51.72	43.43	35.42	-	48.85	61.69	-	-	36.85	49.16	44.74	38.8
39	46.99	40.05	36.81	34.99	34.46	27.85	35.49	32.87	34.27	37.74	29.17	-	35.52	32.32	-
41	53.69	39.5	41.71	39.11	36.96	37.5	-	-	-	-	-	-	41.41	24.83a	-
48	46.59	46.44	40.89	44.78	40.22	34.6	36.34	37.67	46.24	43.42	32.05	29.36	39.63	36.07	30.8
49	37.98	37.07	37.71	41.43	28.92	27.57	30.55	34.86	41.27	39.96	35.3	29.64	35.19	32.02	-
50	49	57.03	46.18	57.58	48.82	39.26	45.8	42.09	56.38	65.85	50.26	43.93	50.18	45.67	32.8
51	21.42	26.03	21.81	19.66	13.38	10.26	11.94	14.2	16.49	20.57	18.19	15.63	17.47	15.89	-
52	-	43.06	34.33	36.1	38.76	31.97	36.88	33.7	41.62	40.61	34	30.64	36.52	33.23	-

(1) See Appendix C for details on bias adjustment & distance correction.

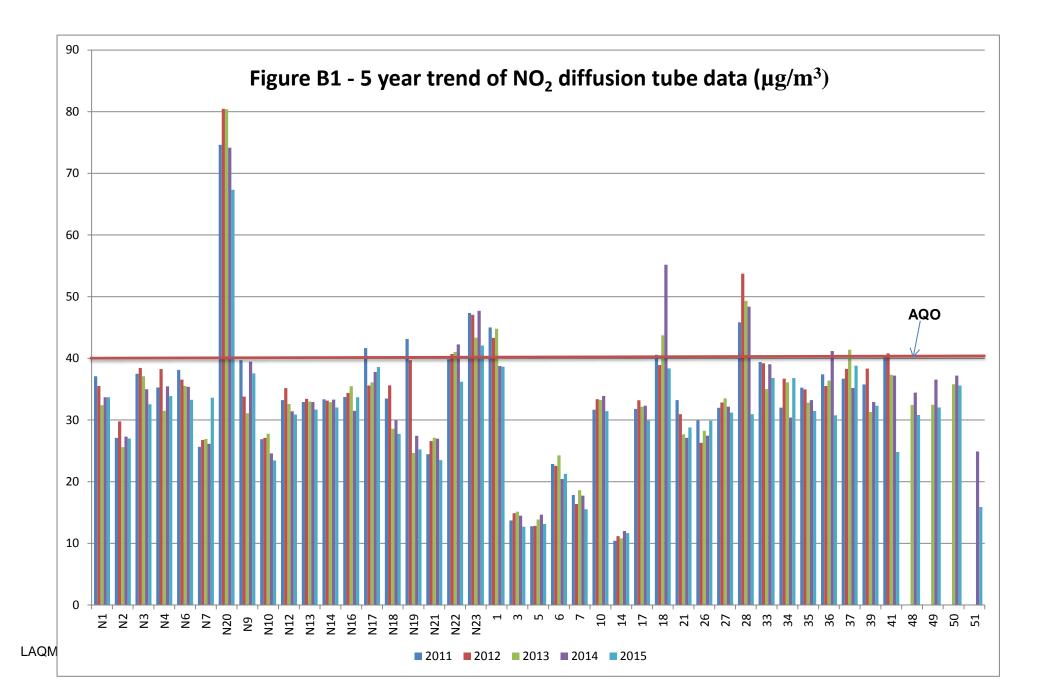

(2) a = data has been annualised before applying bias adjustment factor to account for a period of less than 9 months data collection in the year.

Table B2 - Results of Nitrogen Dioxide Diffusion Tubes (2011 to 2015)

(figures in bold show concentrations higher than the annual NO_2 air quality objective and those in bold & underscored indicate concentrations which may exceed the hourly NO_2 air quality objective)

		Annual mean cor	· · · ·	d for bias & distance	e corrected where a	ppropriate) μg/m ³
		2011*	2012*	20123	2014*	2015
Site	Within	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment
ID	AQMA?	Factor = 0.89)	Factor = 0.97)	Factor = 0.95)	Factor = 0.91)	Factor = 0.91)
N1	Y	37.1	35.5	32.4	33.7	33.7
N2	N	27.09	29.78	25.60	27.31	27.01
N3	N	37.50	38.45	37.10	34.98	32.55
N4	N	35.28	38.27	31.5	35.47	33.88
N6	Y	38.13	36.56	35.54	35.38	33.29
N7	N	25.65	26.76	26.93	26.15	33.62
N20	Y	<u>74.62</u>	<u>80.45</u>	<u>80.39</u>	<u>74.15</u>	<u>67.32</u>
N9	Y	39.7	33.8	31.1	39.46	37.55
N10	Y	26.9	27.10	27.78	24.59	23.44
N12	Y	33.22	35.18	32.6	31.41	30.89
N13	Y	32.91	33.44	33	32.92	31.70
N14	Y	33.36	33.15	32.9	33.30	32.02
N16	Y	33.73	34.40	35.49	31.5	33.7
N17	Y	41.65	35.6	36.1	37.8	38.6
N18	Y	33.48	35.61	28.58	29.92	27.76
N19	Y	43.14	39.7	24.67	27.43	25.24
N21	Y	24.45	26.57	27.14	26.97	23.49
N22	Y	39.84	40.69	41.03	42.25	36.2
N23	Y	47.35	47.07	43.34	47.71	42.08
1	Y	45	43.32	44.80	38.75	38.66
3	N	13.70	14.87	15.14	14.50	12.69
5	N	12.78	12.82	13.87	14.65	13.13
6	N	22.86	22.56	24.28	20.42	21.27
7	N	17.84	16.38	18.62	17.72	15.52

		Annual mean cor	ncentration (adjuste	d for bias & distance	e corrected where a	ppropriate) μg/m ³
		2011*	2012*	20123	2014*	2015
Site	Within	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment
ID	AQMA?	Factor = 0.89)	Factor = 0.97)	Factor = 0.95)	Factor = 0.91)	Factor = 0.91)
10	N	31.66	33.38	33.25	33.9	31.44
14	N	10.41	11.17	10.79	11.99	11.65
17	N	31.80	33.20	32.13	32.31	22.91
18	Y	40.58	38.91	43.73	55.18	38.36
21	N	33.22	30.94	27.68	27.11	28.78
26	N	29.94	26.29	28.25	27.47	29.87
27	Y	31.98	32.84	33.5	32.16	31.21
28	N	45.84	53.72	49.31	48.39	30.95
33	Y	39.4	39.2	35.01	39.03	36.82
34	Y	32	36.7	36.1	30.4	35.3
35	N	35.24	34.97	32.81	33.22	31.46
36	Y	37.41	35.52	36.4	41.2	30.76
37	Y	36.7	38.3	41.4	35.2	38.8
39	N	35.76	38.33	31.3	32.91	32.32
41	N	40.51	40.80	37.32	37.20	24.83
48	N	-	-	32.43	34.45	30.8
49	N	-	-	32.48	36.56	32.02
50	Y	-	-	35.8a	37.2	35.6
51	N	-	-	-	24.89	15.89
52	N	-	-	-	-	33.23

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

There have been no significant changes, nor new sources of pollution within the district (or adjacent to the district boundary) and therefore no screening assessments have been required in the last year. Should any changes or new sources of pollution be identified in the future then the appropriate screening tools will be utilised and the results reported.

No further AQMAs need to be declared, nor existing AQMA boundaries amended or revoked.

Currently monitoring of NO₂ is continuing throughout the district by diffusion tubes to monitor levels to ensure that no further areas are exceeding the Air Quality Objectives with regard to nitrogen dioxide. Additional tubes have been placed within and in the vicinity of the new AQMAs (in Ampthill and Sandy) to gather more information as to the location of exceedences to assist in understanding where actions may be implemented to assist with producing effective Action Plans to work towards reducing levels of NO₂.

QA/QC of Diffusion Tube Monitoring

Diffusion tubes are supplied by Gradko and prepared using 20% TEA (Triethanolamine) in water methodology.

The latest diffusion tube precision studies for Gradko 20% TEA in water methodology show good precision in 26 out of 27 tests carried out during 2015. The remaining test resulted in a poor precision result. This information was obtained from http://lagm.defra.gov.uk/diffusion-tubes/precision.html

The lastest WASP/AIR NO₂ PT results showed that Gradko's results scored 100% satisfactory.

Short-term to Long-term Data Adjustment

Several NO₂ diffusion sites had less than 75% data capture during 201, due to tubes going missing – resulting in the need to "annualise" the data sets.

Two long term automatic monitoring sites from the Hertfordshire and Bedfordshire Monitoring Network were selected to provide data for this calculation. They were Hertsmere Borehamwood background and Watford Town Hall. Calculations can be found below:

2015 ppb data source H&B network														
	Jan	Feb	Mar	Apr			Jul	Aug	Sep	Oct	Nov	Dec	Ave	data %
Hertsmere Borehamwood background	14	15	13	12	7	7	7	9	10	13	13	11	11	100
Watford Town Hall	24	24	19	18	14	13	13	15	18	20	17	13	17	99
2015 converted to ug/m3 (ppb*1.913)														
Hertsmere Borehamwood background	27	29	25	23	13	13	13	17	19	25	25	21	21	
Watford Town Hall	46	46	36	34	27	25	25	29	34	38	33	25	33	
Period Mean	Jun-Dec													
Hertsmere Borehamwood background	19													
Watford Town Hall	30													
Ann mean : period mean (ratio)														
Hertsmere Borehamwood background	0.731835													
Watford Town Hall	0.80569													
Ave	0.768762													
	AM	Ra												
	31.49													
Ampthill 4 (N27) annualised tube ave AM*	Ra		24.21											

Table C1 – NO₂ diffusion tube data annualisation calculation (Ampthill 4 – N27)

Table C2 – NO2 diffusion tube data annualisation calculation (Chalton – 28)

2015 ppb data source H&B network														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave	data %
Hertsmere Borehamwood background	14	15	13	12	7	7	7	9	10	13	13	11	11	100
Watford Town Hall	24	24	19	18	14	13	13	15	18	20	17	13	17	99
2015 converted to ug/m3 (ppb*1.913)														
Hertsmere Borehamwood background	27	29	25	23	13	13	13	17	19	25	25	21	21	
Watford Town Hall	46	46	36	34	27	25	25	29	34	38	33	25	33	
Period Mean	Feb-Sep													
Hertsmere Borehamwood background	19													
Watford Town Hall	32													
Ann mean : period mean (ratio)														
Hertsmere Borehamwood background	0.731835													
Watford Town Hall	0.748999													
Ave	0.740417													
		Ra												
Chalton (28) annualised tube ave AM*Ra	45.94	0.74	34.01											

2015 ppb data source H&B network														
	Jan	Feb	Mar	Apr			Jul	Aug	Sep	Oct	Nov	Dec	Ave	data %
Hertsmere Borehamwood background	14	15	13	12	7	7	7	9	10	13	13	11	11	100
Watford Town Hall	24	24	19	18	14	13	13	15	18	20	17	13	17	99
2015 converted to ug/m3 (ppb*1.913)														
Hertsmere Borehamwood background	27	29	25	23	13	13	13	17	19	25	25	21	21	
Watford Town Hall	46	46	36	34	27	25	25	29	34	38	33	25	33	
Period Mean	Aug-Dec													
Hertsmere Borehamwood background	21													
Watford Town Hall	32													
Ann mean : period mean (ratio)														
Hertsmere Borehamwood background	0.653424													
Watford Town Hall	0.755767													
Ave	0.704596													
	AM	Ra												
	21.77	0.70												
Sandy (N28) annualised tube ave AM*Ra			15.34											

Table C3 – NO₂ diffusion tube data annualisation calculation (Sandy – N28)

Table C4 – NO₂ diffusion tube data annualisation calculation (Brogborough – N7)

2015 ppb data source H&B network														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave	data %
Hertsmere Borehamwood background	14	15	13	12	7	7	7	9	10	13	13	11	11	100
Watford Town Hall	24	24	19	18	14	13	13	15	18	20	17	13	17	99
2015 converted to ug/m3 (ppb*1.913)														
Hertsmere Borehamwood background	27	29	25	23	13	13	13	17	19	25	25	21	21	
Watford Town Hall	46	46	36	34	27	25	25	29	34	38	33	25	33	
Period Mean	Jan-Jul													
Hertsmere Borehamwood background	11													
Watford Town Hall	18													
Ann mean : period mean (ratio)														
Hertsmere Borehamwood background	1.306667													
Watford Town Hall	1.344													
Ave	1.325333													
	AM	Ra												
	27.88													
Brogborough (N7) annualised tube ave A	M*Ra		36.95											

2015 ppb data source H&B network														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave	data %
Hertsmere Borehamwood background	14	15	13	12	7	7	7	9	10	13	13	11	11	100
Watford Town Hall	24	24	19	18	14	13	13	15	18	20	17	13	17	99
2015 converted to ug/m3 (ppb*1.913)														
Hertsmere Borehamwood background	27	29	25	23	13	13	13	17	19	25	25	21	21	
Watford Town Hall	46	46	36	34	27	25	25	29	34	38	33	25	33	
Period Mean	Jan-Jun													
Hertsmere Borehamwood background	22													
Watford Town Hall	36													
Ann mean : period mean (ratio)														
Hertsmere Borehamwood background	0.645737													
Watford Town Hall	0.672093													
Ave	0.658915													
	AM	Ra												
	41.41	0.66												
Chalton (41) annualised tube ave AM*Ra			27.29											

Table C5 – NO₂ diffusion tube data annualisation calculation (Chalton – 41)

National Bias Adjustment Factor (NO₂ diffusion tube data)

The national bias adjustment factor for 2015 is 0.91

The national bias adjustment factor is available for Gradko 20% TEA in water tubes from <u>http://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html</u> and was obtained in July 2016 (version 3/16). See overleaf.

Central Bedfordshire Council

Table C6 – National bias adjustment factor

Image: Control Augment Number State State Control State Control Contro <th< th=""><th>Home</th><th>Insert</th><th>Page Layout</th><th>Formulas</th><th>Data I</th><th>Review</th><th>View Nuance PD</th><th>En En</th><th>terprise Co</th><th>nnect</th><th></th><th></th><th>1.1.1.1</th><th></th></th<>	Home	Insert	Page Layout	Formulas	Data I	Review	View Nuance PD	En En	terprise Co	nnect			1.1.1.1	
B I I I I I Image: Coll part of the second se			* 10 *	$A^{*} A^{*} \equiv \equiv$	≡ ≫-		a Wrap Text			·	J.		+	
A188 C D E F H J K L Valiance of the second control of the second c		ΙŪΞ	· 🖄 ·	A · ≡ ≡	調査の		Merge & Center -	• % ,	¢.0,0,∳. ,¢ 00,	Condition Formattin			Insert	Delete For
B C D E F H I J K L Vational Diffusion Tube Bias Adjustment Factor Spreadsheet Spreadsheet Version Ilumeter: Spreadsheet Version Ilumeter: Spreadsheet Version Ilumeter: This spreadsheet Version Ilumeter: This spreadsheet Version Ilumeter:	ard 🕼	Fo	nt	G	Aligr	nment	19	Numbe	er	6 <u>.</u>	Styles			Cells
Autonal Diffusion Tube Bias Adjustment Factor Spreadsheet Spreadsheet value Display by busies exposed monthly and are of subble for correcting individual abort-form monthing periods. This periadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting individual abort-form monthing periods. Spreadsheet values when the subble for correcting indin the subble value	A1898	+ (*	fx											
Select the Laborator: Market way that days apply to these exposed monthly and are not subable for correcting induction shudes This spreadsheet will be updated day. you should state the apple days and and the version of the spreadsheet This spreadsheet will be updated day. you should state the apple days and the version of the spreadsheet This spreadsheet will be updated versy few months: the factors may therefore be subject to change. This should not discourage their immediate use. This spreadsheet will be updated versy few months: the factors may therefore be subject to change. This should not discourage their immediate use. This spreadsheet will be updated versy few months: the factors may therefore be subject to change. This should not discourage their immediate use. This spreadsheet will be updated to change. This should not discourage their immediate use. This spreadsheet will be updated to change. This should not discourage their immediate use. This spreadsheet will be updated to change. This should not discourage their immediate use. This spreadsheet will be used. I be LADM Helpdek to general to be factors. Step 2. Step 2. <td></td> <td>В</td> <td></td> <td>С</td> <td>D</td> <td>E</td> <td>F</td> <td></td> <td>н</td> <td>1</td> <td>J</td> <td>К</td> <td>L</td> <td>M</td>		В		С	D	E	F		н	1	J	К	L	M
Select the Laborator the Association and the results of <u>relevant</u> co-location shudes This spreadsheet will be a spreadsheet with spreadsheet with a spreadsheet with a spreadsheet wi	lationa	Diffusi	on Tubo		intmont	Ea	ator Oproadabo	at.			Spraadab	ant Mar	nion Num	hor 02/46
Step 1: Step 2: Step 3: Step 3: Step 3: Step 3: Step 3: Step 4: Step 1: Step 3: Step	ollow the step lata only apply Vhenever pres his spreadhse	s below <u>in th</u> to tubes expo enting adjuste et will be upda	e correct ord used monthly and d data, you shi ated every few	er to show the resi nd are not suitable f ould state the adjust months: the factor	ults of <u>releva</u> for correcting tment factor u s may therefo	nt co-l individi sed an re be s	ocation studies Jal short-term monitoring per Id the version of the spreads Subject to change. This shou	iods sheet Id not disc	DATE DOWNLING		e.	This upda	spreadshe ted at the e 2016	eet will be nd of June Wateste
Select he laboratory that Analyses Your Select he laboratory that Your					d Administratic	ins by b	oureau ventas, in conjunction	with					Laborator	y. Original
Selection: In advance 1/2 or 1		Step 1:		Step 2:	Step 3:				S	tep 4:				
Analysed By Mathematic Year Step Totacounterna Step Totacounterna Local Authority Length of Study (months) Diffusion Tube Mean (months) Automatic Tube Mean (months) Aut	Iubesfr	om the Drop-Do	wnList	Preparation Method from the Drone Dovin List Vescourstian method is a trhaun, us have no date	Year from the Drop-Down Lier Hayearir nat	with	caution. Where there is	more that	n one stud the fin n see footno	y, use the ou al column. te ⁴ . If uncertain	verall factor ^a h what to do the	shown i	n blue at tthe Local /	the foot of
iradko 20x TEA in water 2015 UC Breckland Council 12 30 23 15x G iradko 20x TEA in water 2015 R Cheltenham Borough Council 12 35 35 2.7.4 G G iradko 20x TEA in water 2015 R Libun C Sartereagh City Council 10 36 23 24.84 G G iradko 20x TEA in water 2015 R Luton Borough Council 12 46 444 5.0% G <		nalysed By ¹	ज	labaratary. Method Tapada par adralian, shaar Shill fran Bryanay Kal	Year Tendent State	1.	Second dies		Length of Study	Diffusion Tube Mean Conc. (Dm)	Automatic Monitor Mean Conc. (Cm)	Bias	Tube Precisio	Bias Adjustme nt Factor (A) (Cm/Dm)
iradko 20% TEA in water 2015 R Cheltenham Borough Council 12 35 35 2.7% G Introduction iradko 20% TEA in water 2015 R Lisburn & Castleresgh City Council 10 36 28 2.4.8% G G G iradko 20% TEA in water 2015 R Linon Borough Council 12 46 44 6.0% G <	iradko			20% TEA in water	2015	R	Ards and North Down Borough (Council	12	38		48.6%	G	0.67
iradko 20% TEA in vater 2015 R Lisbun & Castlereagh City Council 10 36 28 24.8% G Iradko iradko 20% TEA in vater 2015 R Monmoutshire County Council 12 46 44 6.0% G <td></td> <td></td> <td></td> <td>and the second se</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.99</td>				and the second se	-									0.99
iradko 20% TEA in water 2015 R Luton Borough Council 12 46 44 6.0% G G iradko 20% TEA in water 2015 R Monmouthshile Coung Council 12 411 37 110% G G iradko 20% TEA in water 2015 R City of Lincoh Council 10 4 3 38.7% G G G iradko 20% TEA in water 2015 R City of Lincoh Council 12 39 33 17.9% G G G iradko 20% TEA in water 2015 R Decleyn Council of King's Lynn and Vest Nk 12 47 50 -5.9% G <								cil					-	0.97
iradko 20x TEA in water 2015 B Pembrokeshire Council 10 4 3 38.7x G iradko 20x TEA in water 2015 R City of Lincoh Council 12 39 33 17.9x G 0 iradko 20x TEA in water 2015 R Cheshire Vest and Chester 10 38 400 5.2x G 0 iradko 20x TEA in water 2015 R Dudley MBC 12 47 50 5.3x G 0 iradko 20x TEA in water 2015 R Dudley MBC 12 40 35 14.0x G 0 iradko 20x TEA in water 2015 R Dudley MBC 11 23 18 20.9x G 0 iradko 20x TEA in water 2015 K Glasgow City Council 10 25 25 3.3x P 0 iradko 20x TEA in water 2015 K Glasgow City Council 10 25 25 3.3x P 0 iradko <									-					0.94
iriadko 20% TEA in water 2015 R City of Lincoln Council 12 39 33 17.9% G 1 iriadko 20% TEA in water 2015 R Borough Council of King's Lynn and Vest No 12 29 22 32.5% G G iriadko 20% TEA in water 2015 R Cheshire West and Chester 10 38 40 -5.2% G G iriadko 20% TEA in water 2015 R Dudley MBC 12 47 50 -5.5% G G iriadko 20% TEA in water 2015 R Dudley MBC 12 40 35 14.0% G G 4 iriadko 20% TEA in water 2015 R Dudley MBC 11 23 19 20.3% R G G 4 4 31 10.0% G 16 13 13 10.0% G 16 13 13 10.0% G 16 13 10.0% G 16 13 13 10.0% G 10 16 <td>iradko</td> <td></td> <td></td> <td>20% TEA in water</td> <td>2015</td> <td></td> <td>Monmouthshire County Council</td> <td></td> <td>12</td> <td>41</td> <td>37</td> <td>11.0%</td> <td>G</td> <td>0.90</td>	iradko			20% TEA in water	2015		Monmouthshire County Council		12	41	37	11.0%	G	0.90
iriadko 20% TEA in water 2015 R Borough Council of King's Lynn and Vest Nd 12 2.9 2.2 3.2.5% G Initiadko iriadko 20% TEA in water 2015 R Cheshire Vest and Chester 10 3.8 40 5.2% G G iriadko 20% TEA in water 2015 R Dudleg MBC 12 47 50 4.5.3% G G iriadko 20% TEA in water 2015 R Dudleg MBC 12 40 3.5 14.0.0% G G iriadko 20% TEA in water 2015 R Dudleg MBC 12 34 31 10.0% G G iriadko 20% TEA in water 2015 VB Dudleg MBC 11 2.3 19 2.0.3% G G iriadko 20% TEA in water 2015 VB Glasgow City Council 10 2.5 2.5 3.3% P G iriadko 20% TEA in water 2015 R Glasgow City Council 12 0.6 10 2.8.2% P														0.73
aradko 20% TEA in water 2015 R Cheshire V/est and Chester 10 38 40 -5.2% G aradko 20% TEA in water 2015 R Dudley MBC 12 47 50 -5.3% G aradko 20% TEA in water 2015 R Dudley MBC 12 40 35 14.0% G 0 aradko 20% TEA in water 2015 R Dudley MBC 11 23 13 10.0% G 0 aradko 20% TEA in water 2015 KS Basgow City Council 12 60 61 -0.3% P 0 aradko 20% TEA in water 2015 KS Glasgow City Council 10 25 25 3.3% P 0 aradko 20% TEA in water 2015 KS Glasgow City Council 9 30 31 -2.8% P 0 aradko 20% TEA in water 2015 R Glasgow City Council 12 43 38 14.0% P 0 13 -2.8% G								and Vest No						0.85
iriadko 20% TEA in water 2015 R Dudley MBC 12 40 35 14.0% G G iriadko 20% TEA in water 2015 R Dudley MBC 12 34 31 10.0% G G iriadko 20% TEA in water 2015 VB Dudley MBC 11 23 19 20.3% G G iriadko 20% TEA in water 2015 KS Glasgow City Council 10 25 25 3.3% P G iriadko 20% TEA in water 2015 R Glasgow City Council 10 25 25 3.3% P G iriadko 20% TEA in water 2015 R Glasgow City Council 12 43 38 H.0% P G iriadko 20% TEA in water 2015 KS Marglebone Road Intercomparison 12 102 21 20% 24 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40				the state of the local data and the state of the local data in the second second second second second second se										1.06
iriadko 20% TEA in water 2015 P Dudley MBC 12 34 31 10.0% G iriadko 20% TEA in water 2015 UB Dudley MBC 11 23 19 20.3% G 10 iriadko 20% TEA in water 2015 KS Glasgow City Council 12 60 61 -0.3% P 10 iriadko 20% TEA in water 2015 KS Glasgow City Council 10 02 25 5.3% P 10 iriadko 20% TEA in water 2015 R Glasgow City Council 9 30 31 -2.8% P 10 iriadko 20% TEA in water 2015 R Glasgow City Council 12 43 38 H0/% P 10 iriadko 20% TEA in water 2015 KS Marglebone Road Intercomparison 12 102 81 26.2% G 10 iriadko 20% TEA in water 2015 R Preston City Council 12 28 45 -37.1% G 10 13							and the second se							1.06
àradko 20% TEA în water 2015 UB Dudleg MBC 11 23 19 20.3% G in addso àradko 20% TEA în water 2015 KS Glasgow City Council 12 60 61 -0.3% P in addso àradko 20% TEA în water 2015 KS Glasgow City Council 10 25 25 3.3% P in addso àradko 20% TEA în water 2015 R Glasgow City Council 9 30 31 -2.8% P in addso àradko 20% TEA în water 2015 R Glasgow City Council 12 43 38 14.0% P in addso àradko 20% TEA în water 2015 KS Marglebone Road Intercomparison 12 102 81 26.2% G in addso àradko 20% TEA în water 2015 KS Marglebone Road Intercomparison 12 102 81 26.2% G in addso in addso 20% TEA în water 2015 R Thurtock Borough Council 12 28 45						_								0.88
àradko 20% TEA in water 2015 UB Glasgow City Council 10 25 25 3.3% P in addo àradko 20% TEA in water 2015 R Glasgow City Council 9 30 31 -2.8% P in addo àradko 20% TEA in water 2015 R Glasgow City Council 12 43 38 14.0% P in addo àradko 20% TEA in water 2015 K Marglebone Road Intercomparison 12 102 81 26.2% G in addo àradko 20% TEA in water 2015 K Marglebone Road Intercomparison 12 102 21 4.0% G G àradko 20% TEA in water 2015 R Preston City Council 12 2.0 2.2 4.0% G G àradko 20% TEA in water 2015 R Preston City Council 12 2.8 4.5 -3.7.1% G G àradko 20% TEA in water 2015 R Gateshead Council 11 3.3 3.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td>and so all so</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.83</td></td<>						_	and so all so							0.83
iradko 20% TEA in water 2015 R Gliasgow City Council 9 30 31 -2.8% P iradko 20% TEA in water 2015 R Gliasgow City Council 12 43 38 14.0% P 1 iradko 20% TEA in water 2015 K Marglebone Road Intercomparison 12 102 81 26.2% G 1 iradko 20% TEA in water 2015 KS Marglebone Road Intercomparison 12 102 81 26.2% G 1 iradko 20% TEA in water 2015 R Preston City Council 12 20 22 9.0% G 1 iradko 20% TEA in water 2015 R Preston City Council 12 28 45 -37.1% G iradko 20% TEA in water 2015 R Thurrock Borough Council 11 33 -33 -0.8% G 1 iradko 20% TEA in water 2015 R Gateshead Council 11 33 33 1.2% G 1	iradko			20% TEA in water	2015	_						-0.9%		1.01
iriadko 20% TEA in water 2015 R Glasgow City Council 12 43 38 14.0% P iriadko iriadko 20% TEA in water 2015 KS Marglebone Road Intercomparison 12 102 81 26.2% G iriadko iriadko 20% TEA in water 2015 KS Marglebone Road Intercomparison 12 102 81 26.2% G iriadko 20% TEA in water 2015 R Preston City Council 12 20 22 4.90% G iriadko iriadko 20% TEA in water 2015 R Preston City Council 12 2.8 45 -37.1% G iriadko iriadko 20% TEA in water 2015 R Gateshead Council 11 33 33 4.9% G iriadko 20% TEA in water 2015 R Gateshead Council 11 33 33 11.2% G iriadko 20% TEA in water 2015 R Gateshead Council 12 2.8 2.5 3.2% G iriadko <td></td> <td></td> <td></td> <td>And the second second</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>0.97</td>				And the second									-	0.97
àradko 20% TEA in water 2015 KS Marglebone Road Intercomparison 12 102 81 26.2% G 10 àradko 20% TEA in water 2015 UB Liverpool 12 20 22 -9.0% G 10 àradko 20% TEA in water 2015 R Preston City Council 12 29 27 8.9% G 10 àradko 20% TEA in water 2015 R Thurrock Borough Council 12 2.9 2.7 8.9% G 10 àradko 20% TEA in water 2015 R Thurrock Borough Council 12 2.8 4.45 -3.7.1% G 10 àradko 20% TEA in water 2015 R Gateshead Council 10 3.6 3.3 11.2% G 10 àradko 20% TEA in water 2015 R Gateshead Council 10 3.6 3.3 11.2% G 10 àradko 20% TEA in water 2015 R Gateshead Council 12 2.8 2.5 3.1% G														0.88
iradko 20% TEA in water 2015 R Preston City Council 12 29 27 8.9% G G iradko 20% TEA in water 2015 R Thurrock Borough Council 12 28 45 -37.1% G iradko 20% TEA in water 2015 R Thurrock Borough Council 11 33 33 -0.8% G iradko 20% TEA in water 2015 R Gateshead Council 11 33 33 -0.8% G iradko 20% TEA in water 2015 R Gateshead Council 10 36 33 1.12% G G iradko 20% TEA in water 2015 R Gateshead Council 12 28 25 9.2% G G iradko 20% TEA in water 2015 R Gateshead Council 12 28 25 9.2% G G iradko 20% TEA in water 2015 R Mer Forest DC 11 47 36 31.1% P iradko 20% TEA in water 2015 R Mer Forest DC 11 36 33 4.8% G iradko 20% TEA in water 2015								on					G	0.79
kiradko 20% TEA in water 2015 R Thurrock Borough Council 12 28 45 -37.1% G kiradko 20% TEA in water 2015 R Gateshead Council 11 33 33 -0.8% G kiradko 20% TEA in water 2015 R Gateshead Council 11 33 33 -0.8% G kiradko 20% TEA in water 2015 R Gateshead Council 10 36 33 11.2% G G kiradko 20% TEA in water 2015 R Gateshead Council 12 28 25 3.2% G G kiradko 20% TEA in water 2015 K New Forest DC 11 47 36 31.1% P G kiradko 20% TEA in water 2015 R New Forest DC 11 33 25 31.7% G G kiradko 20% TEA in water 2015 R Vekingham Borough Council 11														1.10
Radko 20% TEA in water 2015 R Gateshead Council 11 33 33 -0.8% Gateshead Council Wradko 20% TEA in water 2015 R Gateshead Council 10 36 33 11.2% Gateshead Council Wradko 20% TEA in water 2015 R Gateshead Council 10 36 33 11.2% Gateshead Council Wradko 20% TEA in water 2015 R Gateshead Council 12 28 25 9.2% Gateshead Council 11 47 36 31.1% P Wradko 20% TEA in water 2015 R New Forest DC 11 33 25 31.7% Gateshead Council 11 33 25 31.7% Gateshead Council 11 36 33 4.80% Gateshead Council 11 33 25 31.7% Gateshead Council 11 33 25 31.7% Gateshead Council 11 36 33 4.80% Gateshead Council 11 36 33 4														0.92
Virtual constraint 2015 P. Gateshead Council 10 36 33 11.2% Gateshead Council viradko 20% TEA in water 2015 R Gateshead Council 12 28 25 9.2% Gateshead Council 12 28 25 9.2% Gateshead Council 12 28 25 9.2% Gateshead Council 11 47 36 31.1% P 16 16 16 16 16 17 18 31.1% P 16 17 18 31.1% P 16 18 16 17 36 31.1% P 16 18 16 17 18 31.1% P 16 18 16 17 18 31.1% P 16 18 16 17 18 31.1% P 18 18 16 17 17 18 17 18 17 18 17 18 17 18 17 18 17			-			_	and the second design of the						-	1.03
Bit Markon 20% TEA in water 2015 KS New Forest DC 11 47 36 31.7/z P aradko 20% TEA in water 2015 R New Forest DC 11 33 25 31.7/z G 0 iradko 20% TEA in water 2015 R Vekingham Borough Council 11 36 33 -680 x G 0 iradko 20% TEA in water 2015 R Vokingham Borough Council 11 36 33 -680 x G 0 iradko 20% TEA in water 2015 UC Southampton City Council 12 28 29 -3.5% G	iradko			20% TEA in water		R	Gateshead Council		10	36	33		G	0.90
Bit Marko 20% TEA in water 2015 R New Forest DC 11 33 25 31.7% G M Water 20% TEA in water 2015 R Vokingham Borough Council 11 36 33 -69.0% G M Water 20% TEA in water 2015 UC Southampton City Council 12 28 29 -3.5% G														0.92
Image: Name 20% TEA in water 2015 R Vokingham Borough Council 11 36 33 -69.0% G iradko 20% TEA in water 2015 UC Southampton City Council 12 28 29 -3.5% G				And the second state of th										0.76
iradko 20% TEA in water 2015 UC Southampton City Council 12 28 29 -3.5% G														0.93
iradko 20% TEA in water 2015 Overall Factor" (29 studies) Use	iradko			20% TEA in water	2015		Southampton City Council					-3.5%	G	1.04
	iradko			20% TEA in water	2015		Overall Factor [*] (29 st	udies)					Use	0.91
ror Casella ScaligeriBureau ventas (INO F Bureau Ventas Caso) use trataco 300, TEX III cectone. or Casella Seal/GMSS/Casella CRE/Bureau Ventas Labs/Eurofins/ use Environmental Scientific M. Collocation Data / Revisions / 20/ 11 11 11 11 11 11 11 11 11 11 11 11 11	cetone.		RE/Bureau Verita	s Labs/Eurofins/ use E		ientific								

Distance Correction (fall off)

In addition sites have had a distance correction factor applied where appropriate to calculate the drop off in pollution from the source to the receptor. This has been done in accordance with the methodology in Defra's Local Air Quality Management Technical Guidance (LAQM TG.09) published in February 2009.

Sites that were exceeding, or near to breaching, the NO₂ annual objective concentration, but were not in locations of relevant exposure required that a distance correction factor to be applied to calculate the likely concentration at the nearest receptor using the NO₂ fall-off with distance calculator available on the LAQM Support website http://laqm.defra.gov.uk/tools-monitoring-data/no2-falloff.html

The calculations for each site can be found overleaf

🔣 🛛 😴 🔍 🐨 🕸 NO2-Fall-Off-With-Distance-from-Roads-Calculator-v4.1 [Read-Only] [Compatibility Mode] - Microsoft Excel 🗆 🖻	23
File Home Insert Page Layout Formulas Data Review View Nuance PDF Enterprise Connect 🛆 🕜 📼	æ XX
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	~
	-
Enter data into the red cells Step 1 How far from the KERB was your measurement made (in metres)? 1 metres Step 2 How far from the KERB is your receptor (in metres)? 3 metres Step 3 What is the local annual mean background NO2 concentration (in µg/m ³)? 38.32 µg/m ³	
Result The predicted annual mean NO2 concentration (in µg/m ³) at your receptor 33.7 # • • • • Introduction / Limitations Cakulator / Graphical Representation / Image: Cakulator / Graphical Representation / Im	

Table C7 - Distance correction for site N1

Central Bedfordshire Council

Table C8 -Distance correction for site N16

🔣 🚽 🄊 • C ^{all} - I = Microsoft Excel	-	, F X	3
File Home Insert Page Layout Formulas Data Review View Nuance PDF Enterprise Connect		۵ (2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l& Shar ct ∗	e Upload	
H13 - 6 5 39.32			~
			-
and Too Lanon Jurgino Prance Contraction And Technology Contraction And Contra		4	
Image: Concentration (in µg/m³) at your receptor 33.7 How far The predicted annual mean NO2 concentration (in µg/m³) at your receptor 33.7			
L Ready 100%	Θ		÷
🔞 🚍 🖄 🄗 💟 💁 🖳 🍘 🔛	- 110	14:43 18/10/2016	ľ

Table C9 - Distance correction for site N17

2 2 9 - 1 - 1 - 1 - 1 - NO2-Fall-Off-With-Distance-from-Roads-Calculator-v4.1 [Read-Only] (Compatibility Mode) - Microsoft Excel]	 9 2
		⊕ ☆ ⊕
File Home Insert Page Layout Formulas Data Review View Nuance PDF Enterprise Connect	x 🖬 🗆 🚯 o	x Q •
		× 🕗 •
Paste - B Z II - C - A - A - F - F - C - C - A - A - F - F - C - C - C - C - C - C - C - C		
Opposite Parties 0 2 0.01 · · · · · · · · · · · · · · · · · · ·		~
Uppender v (n Trim v) regeneres v regener		
N V CIN		
	-	
Air Quality		
Enter data into the red cells		
Step 1 How far from the KERB was your measurement made (in metres)? 1 metres		
Step 2 How far from the KERB is your receptor (in metres)? 7 metres		
Step 3 What is the local annual mean background NO ₂ concentration (in µg/m ³)? 13.9649 µg/m ³		
Step 4 What is your measured annual mean NO ₂ concentration (in µg/m ³)? 45.66 µg/m ³		
	-	
Result The predicted annual mean NO ₂ concentration (in µg/m ³) at your receptor 33.2 µg/m ³		
H + 0 + H Introduction / Limitations Calculator / Graphical Representation / 9 /		
Ready 130%	• • • J	
		~
💽 🚝 🗠 🗋 👱 🥵 🐙 🖳 🌑 🖾		- () 10:49 20/10/2016

X . · · · ·	NO2-Fall-Off-With-Distance-from-Roads-Calcula	tor-v4.1 [Read-Only] [Compatibility Mode] -	Microsoft Excel		a 🗣 💶
File Home Insert Page Layout Formulas Data R	view View Nuance PDF Enterprise Connect			a 🚱 🗆 🕼 🛙	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	■ ⊕ ■ Wasp Test ■ ■ ₩ Wasp Test ■ ● ● ■ ₩ Wasp Ext ■ ● ● Alignment 0 Number 0	Format s Table	v Insert Delete Format ∠ Clear × Filter Select ×	e Upload Box	× 0 •
Step 4 What is your measured annual me	neasurement made (in metres)? eptor (in metres)? ground NO ₂ concentration (in µg/m ³)? in NO ₂ concentration (in µg/m ³)? in NO ₂ concentration (in µg/m ³)?	AirQuality ata into the red cells 1 motros 8 motros 14.3141 µg/m ³ 39.76 µg/m ³ 29.1 µg/m ³			• 0 252205
					20/10/2016

Table C10 - Distance correction for N22

Table C11 - Distance correction for site 33

😰 🙀 🌒 • 🕐 - 💌 NO2-Fall-Off-With-Distance-from-Roads-Calculator-41 (Read-Only) [Compatibility Mode] - Microsoft Excel	
Rice Home Inset Page Layout Formulas Data Review View Naance PDF Enterprise Connect 🗠 🥥 🗆 🛱	x ① ☆ ②
A Cut Aus -100 Aux ************************************	× Ø•
A	*
Enter data into the red cells Step 1 How far from the KERB was your measurement made (in metres)? 8 metres	
Step 2 How far from the KERB is your receptor (in metres)? 9 metres	
Step 3 What is the local annual mean background NO; concentration (in µg/m ³)? 15.20736 µg/m ³	
Step 4 What is your measured annual mean NO ₂ concentration (in µg/m ²)? 36.82 µg/m ³	
Step 4 what is your measured annual mean no ₂ concentration (in pg/m)? 36.62 Point	-
Result The predicted annual mean NO ₂ concentration (in µg/m ²) at your receptor 35.9 µg/m ²	
+ + → #] bitrofuction / Unitations Calculator / Exploral Representation / 12 /	*
	~
💽 🚞 🗠 🗈 💆 🥵 🕊 🗶 🧭 🗠	 10:52 20/10/2016

😰 🙀 🦻 • 🕲 = 1 a N02-fail-Off-With-Distance-from-Roads-Calculator-v4.1 [Read-Only] [Compatibility Mode] - Microsoft Excel	
File Hone Insert Page Layout Formulas Data Review View Nuance PDF Enterprise Connect 🗠 🚱 🗢	
	640 TO
Step 3 What is the local annual mean background NO ₂ concentration (in µg/m ²)? 15.20736 µg/m ²	
Step 4 What is your measured annual mean NO, concentration (in µg/m ³)? 44.98 µg/m ³	
Result The predicted annual mean NO, concentration (in µg/m ²) at your receptor 36.7 µg/m ³	=
result ine preucted annual mean NO ₂ concentration (in pum) at your receptor 36.7 journ	
	-
test brokets _ Uniters _ Galakter _ Orghol Revesention _ /9 /	•
🔞 🛗 🗷 🗋 💆 💁 🗶 🗶 🍊 🕾	- () 10:53 20/10/2016

Table C12 - Distance correction for site 34

Table C13 - Distance correction for site 37

🔣 🛃 🍠 🕈 🖓 🖌 🖓 🖉		- 8 - 2
File Home Insert Page Layout Formulas Data Review View Nuance PDF Enterprise Connect		۵ 🕜
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	hat Cell Insert Delete Format ole - Styles	hare Upload
H14 $\mathbf{r} = f_{\mathbf{x}}$		×
NOX RESULTS		
NO2-Fall-Off-With-Distance-from-Roads-Calculator-v4.1 [Read-Only] [Compatibility Mode]	_ 0 X	3
Image: constraint of the predicted annual mean NO2 concentration (in µg/m³) at your receptor Enter data into the red cells		=
Ready	III I 100% (-)	
	· ())	14:53 18/10/2016

		 9 X
Image: Proceeding of the set of		⊕ ☆ @
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		× 0 •
Enter data into the red cells	C.	
Step 1 How far from the KERB was your measurement made (in metres)?		
Step 2 How far from the KERB is your receptor (in metres)? 10 metres		
Step 3 What is the local annual mean background NO, concentration (in µg/m ²)? 17.88899 µg/m ³		
Step 4 What is your measured annual mean NO, concentration (in µg/m ³)? 45,67 µg/m ³		
Result The predicted annual mean NO2 concentration (in µg/m²) at your receptor 32.8 µg/m²	=	
I C F H http://withins Cakulator / Gg/hcg/Representation / Gg /	•	
🔞 🚞 🗷 🗅 🔍 💁 🌌 🗶 🔍 🗶		- () 10:54

Table C14 - Distance correction for site 50

Table C15 - Distance correction for site 48

🐹 🖌 🥙 • C ^a • 1 = Microsoft Excel		- 6	P 23
File Home Insert Page Layout Formulas Data Review View Nuance PDF Enterprise Connect			۵ 🕜
▲ Cut Arial 10 A' A' ≡ = ⊗r ⊒ Wrap Text General Image: Constraint of the state of the	1& Sh	are Upl	
H15 ~ (~ Å			*
		3	
Enter data into the red cells Step 1 How far from the KERB was your measurement made (in metres)? 1 metres Step 2 How far from the KERB is your receptor (in metres)? 4 metres Step 3 What is the local annual mean background NO ₂ concentration (in µg/m ³)? 1 metres Step 4 What is your measured annual mean NO ₂ concentration (in µg/m ³)? 36.07 µg/m ³ Result The predicted annual mean NO ₂ concentration (in µg/m ³) at your receptor 30.8 µg/m ³			
Ready Image: Imag	<u> </u>	14:	
			2016

Realtime (continuous) data adjustment

The Sandy AURN automatic monitoring station data capture of NO₂ was 98% and 94% for PM_{2.5}. However the data capture of PM₁₀ was only 58% (due to issues with the monitoring equipment) and so the 2015 PM_{10} data set has been annualised as detailed below:

2015 Ug/m3 PM10 data (grav equivalent						data capti	ure%														
	Ann ave																				
Hertsmere Borehamwood background	14					97															
Watford Town Hall	18					100															
Period Mean	1/5/15-2/2	2/15	5/2/15-26	/2/15	19/3/15-3	1/3/15	22/4/15-4	/6/15	10/6/15-2	4/6/15	27/6/15-6	/7/15	22/7/15-5	/8/15	1/10/15-5	/11/15	14/11/15-	16/12/15	23/12/15-	31/12/15	
	-/ -//	,	-, -,	-,		, .,		, _,		,, .,		.,			-, -,						
Hertsmere Borehamwood background	22		17		29		21		23		25		18		20		16		20		
Watford Town Hall	23		27		26		19		21		21		17		25		20		30		
Ann mean : period mean (ratio)																					
Hertsmere Borehamwood background	0.636364		0.823529		0.482759		0.666667		0.608696		0.56		0.777778		0.7		0.875		0.7		
Watford Town Hall	0.782609		0.666667		0.692308		0.947368		0.857143		0.857143		1.058824		0.72		0.9		0.6		
Ave	0.709486		0.745098		0.587533		0.709486		0.732919		0.708571		0.918301		0.71		0.8875		0.65		0.735889
	AM	Ra																			
	14	0.735889																			
Sandy annualised PM10 ave AM*Ra			10.30																		

Two long term automatic monitoring sites from Hertfordshire and Bedfordshire Monitoring Network were selected to provide data for this calculation. They were Watford Town Hall and Hertsmere Borehamwood background.

QA/QC of Automatic Monitoring

The Sandy site became an affiliated site in the AURN National Network in January 2009, which resulted in an FDMS upgrade to the PM_{10} TEOM and also the installation of a $PM_{2.5}$ FDMS TEOM.

NO₂ is measured using an API chemiluminescent NO_x analyser which is housed in an air conditioned cabin. Data is collected remotely using a GSM modem link. The analyser is serviced every six months by We Care 4 Air and is visited every two weeks by a council officer who calibrates it using bottled gas of a known concentration and the results are logged. Since the affiliation of the Sandy site with Defra's national network, an audit is to be undertaken every 6 months.

The data from the AQMS site at Sandy roadside is ratified by ERG to the AURN standard and QA/QC visits are carried out by AEA Ricardo on a regular basis.

PM Monitoring Adjustment

The Sandy site has been affiliated to the AURN network and so data does not require to be adjusted by the VCM method. As with the NO₂ analyser, the location is representative of public exposure at certain locations along the A1, however, some residential properties are closer to the road (although standing traffic doesn't occur as much at these locations) and some are more distant. This section of the A1 was the subject of a Detailed Assessment in 2008 which included PM₁₀. It was found that

 PM_{10} levels did not threaten either of the objectives, which were backed up by 2008 monitoring data.

Validation

This process operates on data during the data collection stage. All data are continually screened algorithmically and manually for anomalies. There are several techniques designed to discover spurious and unusual measurements within a very large dataset. These anomalies may be due to equipment failure, human error, power failures, interference or other disturbances automatic screening can only safely identify spurious results that need further manual investigation.

Raw data from the gaseous instruments (e.g. NOx, O3, SO2 and CO) are scaled into concentrations using the latest values derived from the manual and automatic calibrations. These instruments are not absolute and suffer drifts. Both the zero baseline (background) and the sensitivity change with time. Regular calibrations with certified gas standards are used to measure zero and sensitivity. However, these are only valid for the moment of the calibration since the instrument will continue to drift. Raw measurements from particulate instruments (e.g. PM10 an PM2.5) generally do not require scaling into concentrations. The original raw data are always preserved intact while the processed data are dynamically scaled and edited.

Ratification

This is the process that finalises the data to produce the measurements suitable for reporting. All available information is critically assessed so that the best data scaling is applied and all anomalies are appropriately edited. Generally this operates at three, six or twelve month intervals. However, unexpected faults can be identified during the instrument routine services or independent audits which are often at 6 monthly intervals. In practice, therefore, the data can only be fully ratified in 12 month or annual periods. The data processing performed during the three and six monthly cycles helps build a reliable dataset that is finalised at the end of the year.

There is a diverse range of additional information that can be essential to the correct understanding and editing of data anomalies. These may include:

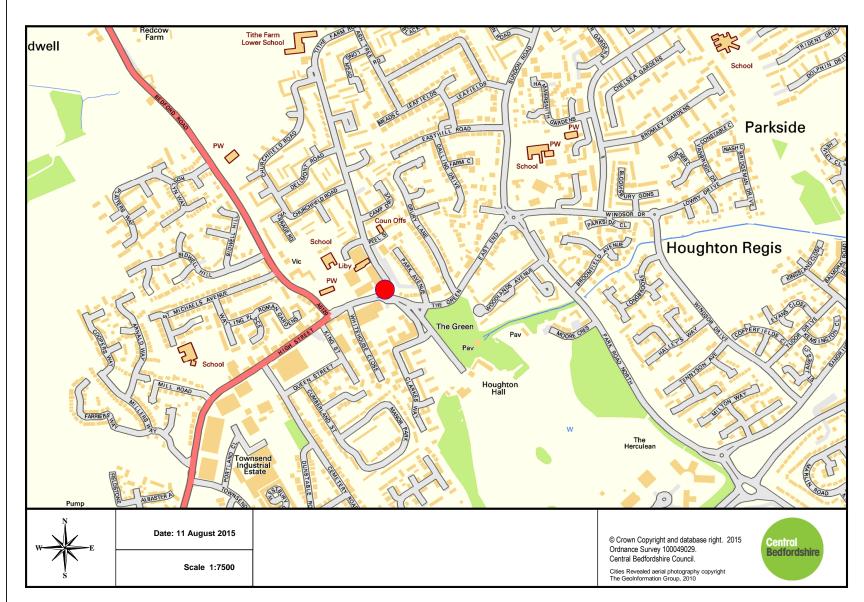
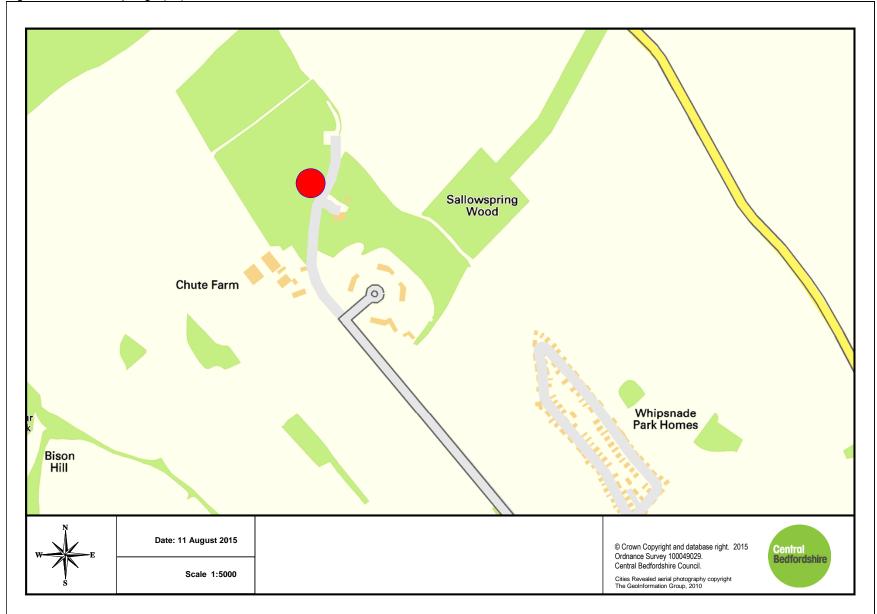
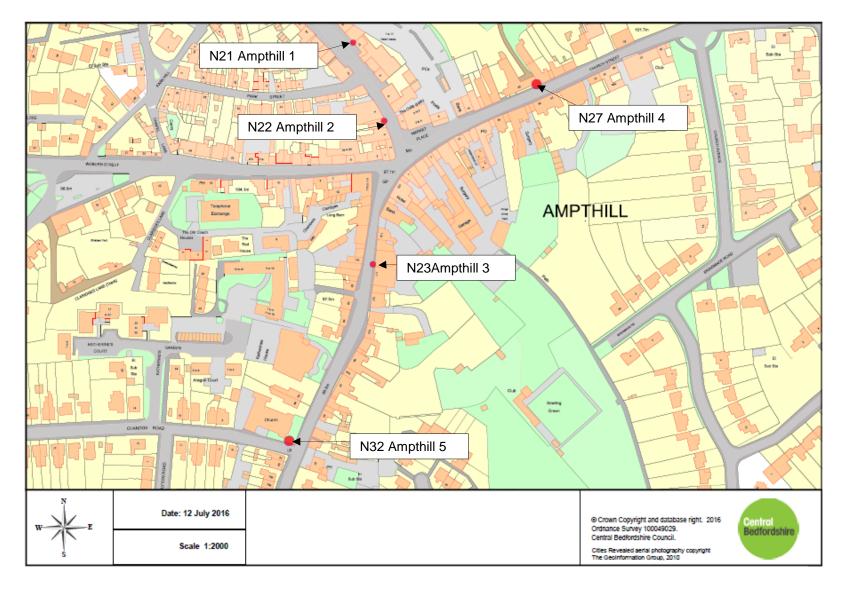
- The correct scaling of data
- Ignoring calibrations that were poor e.g. a spent zero scrubber
- Closely tracking rapid drifts or eliminating the data
- Comparing the measurements with other pollutants and nearby sites
- Corrections due to span cylinder drift
- Corrections due to flow drifts for the particulate instruments
- Corrections for ozone instrument sensitivity drifts
- Eliminating measurements for NO2 conversion inefficiencies
- Eliminating periods where calibration gas is in the ambient dataset
- Identifying periods where instruments are warming up after a power cut
- Identification of anomalies due to mains power spikes
- Correcting problems with the date and time stamp

• Observations made during the sites visits and services

The identification of data anomalies, the proper understanding of the effects and the application of appropriate corrections requires expertise gained over many years of operational experience. Instruments and infrastructure can fail in numerous ways that significantly and visually affect the quality of the measurements. There are rarely simple faults that can be discovered by computer algorithms or that can be understood without previous experience.

Further information about air quality data management, expert data ratification and examples of bad practices are given on the Air Quality Data Management (AQDM) website <u>http://www.aqdm.co.uk</u>

Appendix D: Map(s) of Monitoring Locations

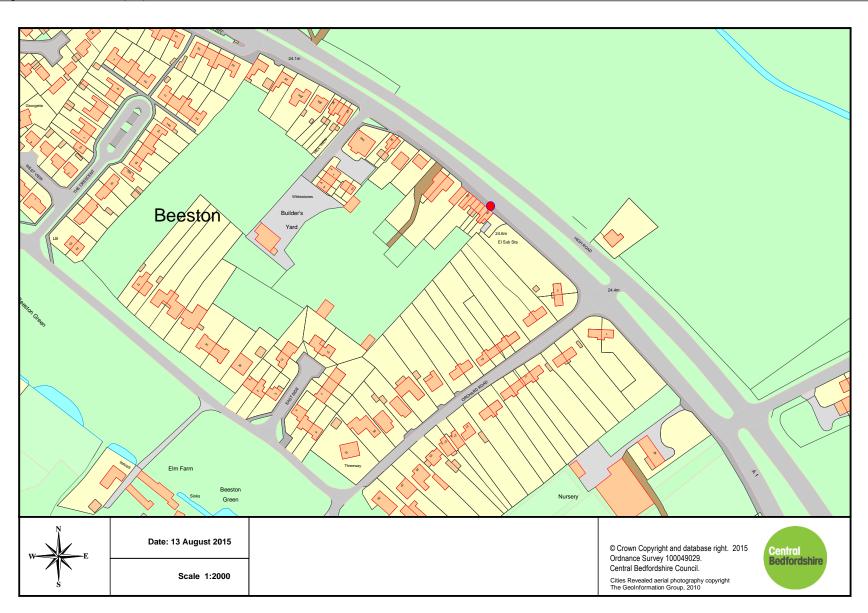

Figure D2 - Sallowsprings (14) NO2 diffusion tube site

Figure D3 - Ampthill NO2 diffusion tube site

Figure D4 - Beeston (N4) NO2 diffusion tube site

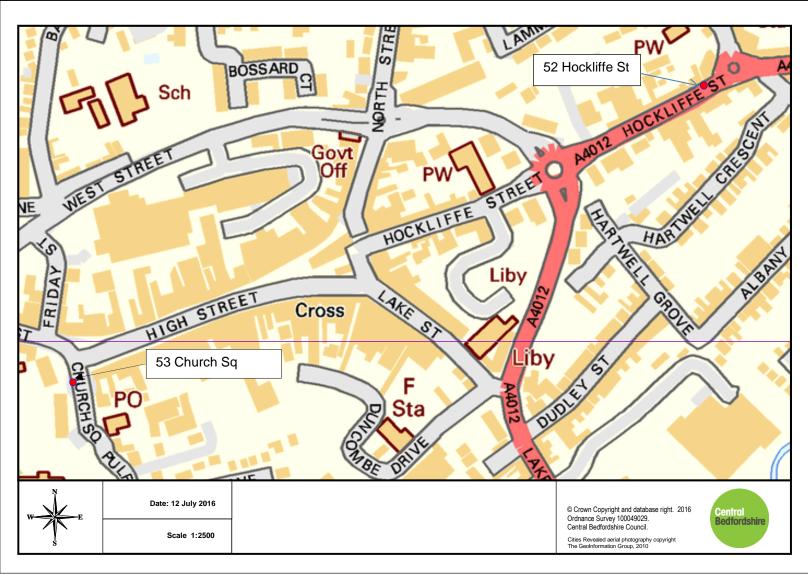
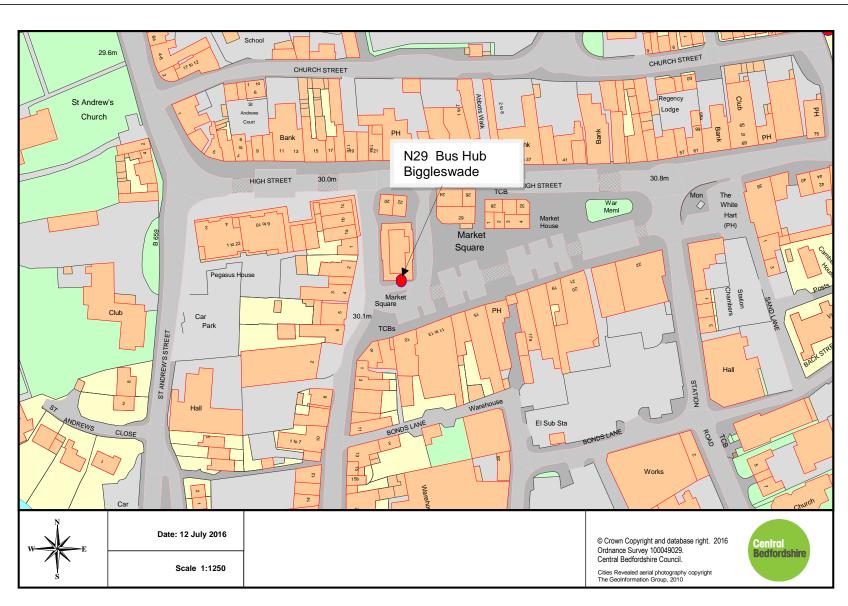
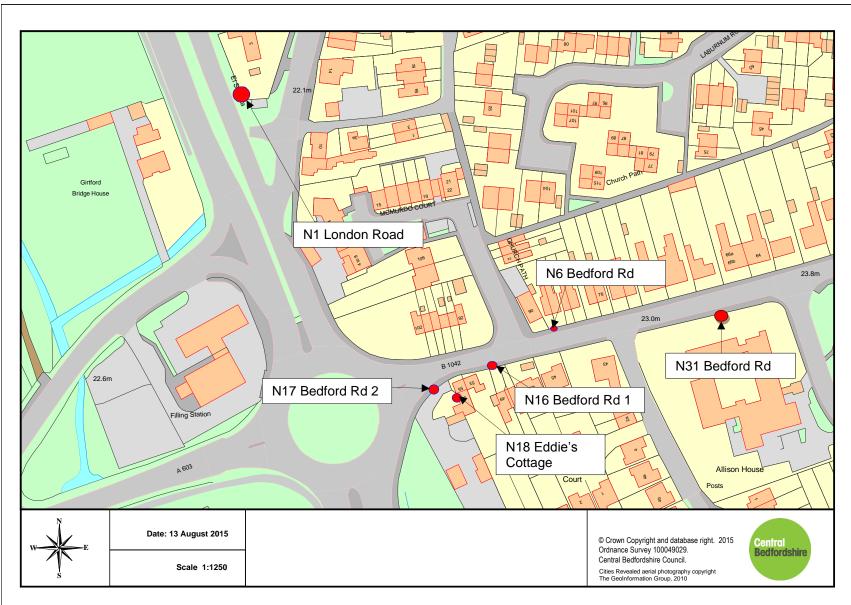
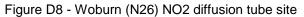


Figure D5 - Hockliffe Street, Leighton Buzzard (52) & Church Sq (53) NO2 diffusion tube site

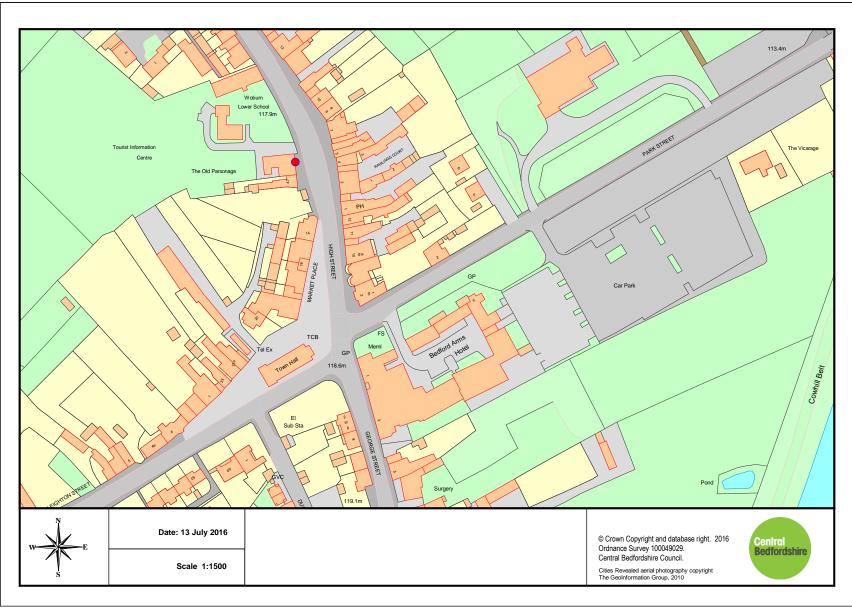
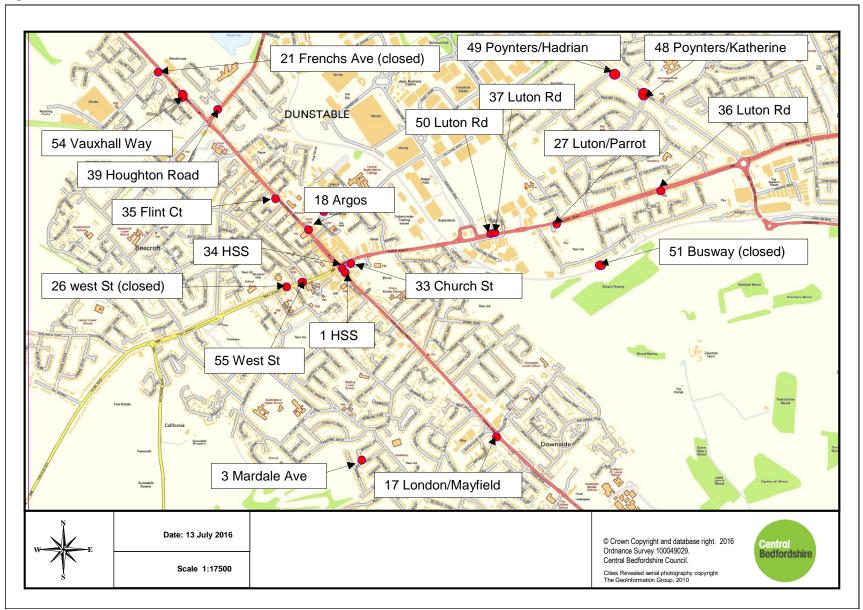

Figure D6 - Biggleswade (N29) NO2 diffusion tube site

Figure D7 - Sandy NO2 diffusion tube site



Central Bedfordshire Council

Figure D9 - Dunstable N02 diffusion tube sites

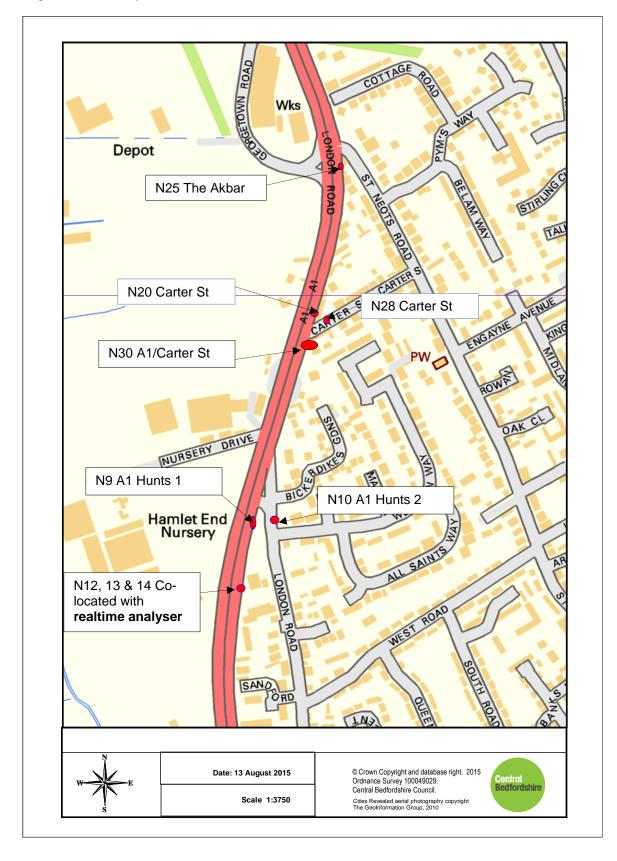
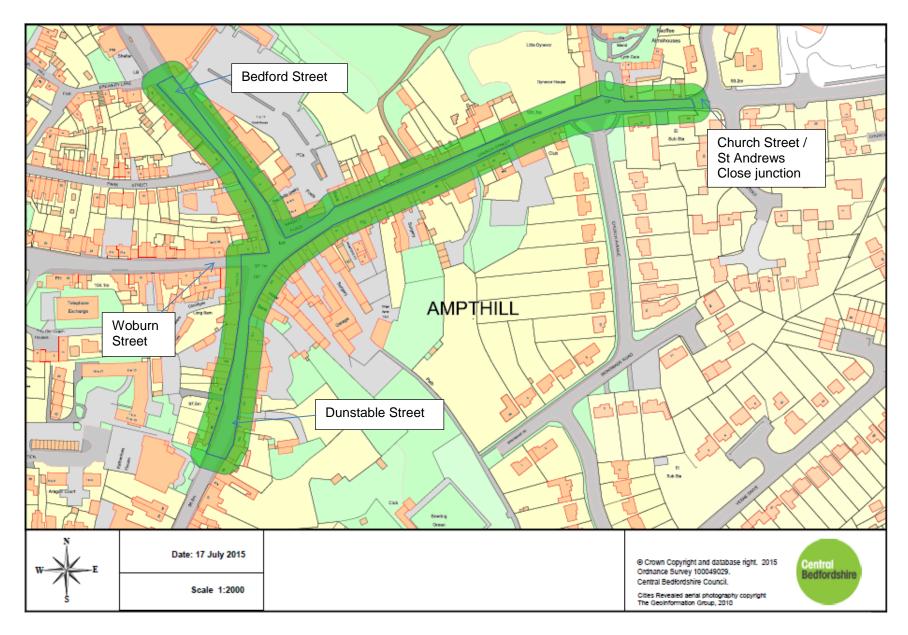


Figure D10 - Sandy NO2 diffusion tube site

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England

Pollutant	Air Quality Objective ⁴								
Pollutant	Concentration	Measured as							
Nitrogen Dioxide	200 μg/m ³ not to be exceeded more than 18 times a year	1-hour mean							
(NO ₂)	40 μg/m ³	Annual mean							
Particulate Matter (PM ₁₀)	50 μg/m ³ , not to be exceeded more than 35 times a year	24-hour mean							
	40 μg/m ³	Annual mean							
	350 μg/m ³ , not to be exceeded more than 24 times a year	1-hour mean							
Sulphur Dioxide (SO ₂)	125 μg/m ³ , not to be exceeded more than 3 times a year	24-hour mean							
	266 µg/m ³ , not to be exceeded more than 35 times a year	15-minute mean							


⁴ The units are in microgrammes of pollutant per cubic metre of air (μ g/m³).

Appendix F: Location maps of Air Quality Management Areas

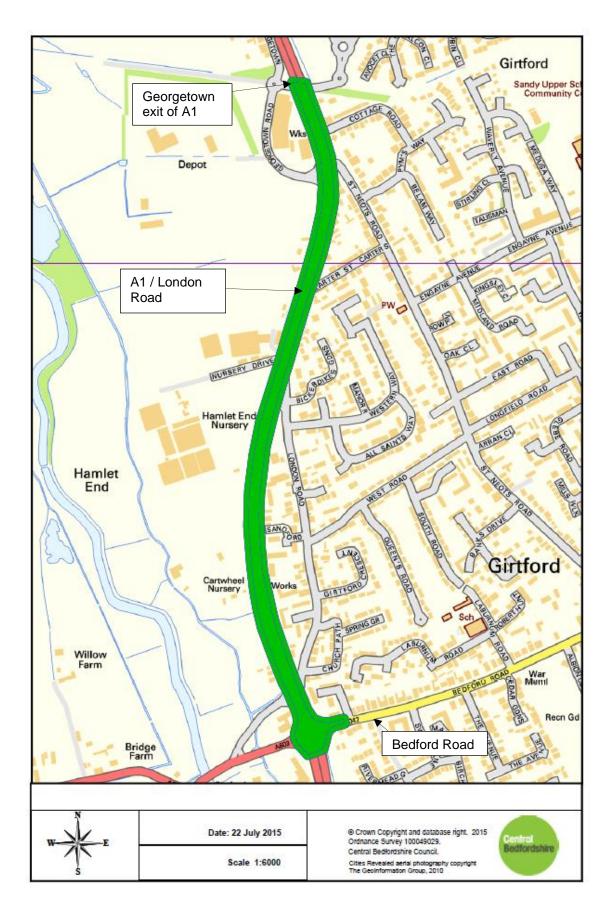

Figure F1 - Dunstable AQMA location

Figure F2 – Ampthill AQMA location

F3 – Sandy AQMA location

Glossary of Terms

Abbreviation	Description
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives
ASR	Air quality Annual Status Report
Defra	Department for Environment, Food and Rural Affairs
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England
EU	European Union
FDMS	Filter Dynamics Measurement System
LAQM	Local Air Quality Management
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less
QA/QC	Quality Assurance and Quality Control
SO ₂	Sulphur Dioxide
Street Canyon	where buildings on both sides of the road can lead to the formation of vortices and recirculation of air flow that can trap pollutants and restrict dispersion (often termed as the "canyon effect"). Street canyons can generally be defined as narrow streets where the height of buildings on both sides of the road is greater than the road width. However, broader streets may also be considered as street canyons where buildings result in reduced dispersion and elevated concentrations (which may be demonstrated by monitoring data). Therefore canyon effects can occur both in small towns or large cities.

References

- COMEAP (2009) Long-Term Exposure to Air Pollution: Effect on Mortality. Committee on the Medical Effects of Air Pollutants. Available at <u>http://www.comeap.org.uk/documents/reports</u>
- PHE(2014) Estimating Local Mortality Burdens associated with Particulate Air Pollution. AM Gowers, et al. Available at <u>https://www.gov.uk/government/publications/estimating-local-mortalityburdens-associated-with-particulate-air-pollution</u>
- Central Bedfordshire Council
 - (2015) Updating & Screening Assessment (USA) report. Available at <u>http://www.hertsbedsair.net/frmFolderMappingDownload.aspx?prevDir=</u> <u>Local Authority Reports\Central Bedfordshire</u>
 - o Central Bedfordshire Council Local Transport Plan 3
- Defra
 - Local Air Quality Management Technical Guidance (LAQM.TG(09))
 - Defra website NO₂ fall off with distance calculator accessed at <u>http://laqm.defra.gov.uk/tools-monitoring-data/no2-falloff.html</u>
 - Defra website National bias adjustment factor spreadsheet (version 3/15) accessed at <u>http://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html</u>
 - Defra website Background maps accessed at
 - <u>http://laqm.defra.gov.uk/review-and-assessment/tools/background-</u> <u>maps.html</u>
- Hertfordshire and Bedfordshire Air Quality Monitoring Network accessed at <u>www.HertsBedsAir.net</u>
- Office for National Statistics 2015 mid year estimate accessed at <u>http://www.centralbedfordshire.gov.uk/council/census/figures.aspx</u>